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ABSTRACT

In winter, temperate resident birds are often faced with periodic
low natural food availability. This reduction or unpredictability
in resource availability might then have a negative impact on im-
mune function, given that immune system support is highly re-
source dependent. We investigated the balance between energetic
and immune management in captive black-capped chickadees
(Poecile atricapilus) by manipulating the predictability of re-
sources. The control group received food ad lib. every day, while
the experimental group received a reduced amount of food on
random days and food ad lib. on all other days. We measured
two key metrics of energetic management (body and fat mass) as
well as a suite of immune system components. Compared with
control birds, experimental birds maintained significantly higher
total body and fat mass, had lower acute phase protein con-
centrations, and had decreased body temperature and lost more
body mass during the fever response following injection with
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lipopolysaccharides. Interestingly, birds in both groups had sim-
ilar levels of complement lysis, delayed-type hypersensitivity
response (phytohemagglutinin), and primary antibody produc-
tion (keyhole limpet hemocyanin). This experiment demon-
strates that black-capped chickadees strategically increase their
fat mass in response to decreased food availability and that this
might allow the birds to maintain most of the immune system
unaltered, except some of the most costly immune components.

Keywords: food unpredictability, immune function, body con-
dition, fat, complement, haptoglobin, black-capped chickadee.

Introduction

In winter or during an extreme weather event, natural food avail-
ability can be unpredictable or animals might not be able to for-
age for resources, which typically causes declines in body mass
(Acquarone et al. 2002; Cucco et al. 2002). In this situation, a
simple explanation for the mass loss is a passive thermodynamic
response to the energy imbalance caused by lower energy intake.
Alternatively, in some animals, the periodic energy imbalance
induces an active response whereby they strategically adjust to
unpredictable food resources with an increase in fat and body
mass as a hedge against energy imbalance (Witter et al. 1995;
Houston et al. 2007).

The idea of strategic increases in fattening has been proposed
by many to explain variation in winter body mass of small tem-
perate resident passerines (McNamara and Houston 1990; Hous-
ton and McNamara 1993; Witter et al. 1995). Descriptive studies
have shown that resident birds tend to be the heaviest during the
harshest periods of winter, when food availability might be low
(Lehikoinen 1987; Witter et al. 1995; Cooper 2007). This in-
crease in lipid stores is thought to provide a buffer of protection
when birds might not be able to adequately forage or find enough
daily resources. Nevertheless, while this strategic fattening is
typically thought of as a benefit, sometimes there are asso-
ciated costs, including increased energy expenditure and thus
metabolic rate (Witter and Cuthill 1993) and also risk of pre-
dation (Witter et al. 1995).

To our knowledge, only a few studies in birds examined im-
mune responses to unpredictable food resources, that is, peri-
odic energy imbalances. For example, when food abundance and
predictability were experimentally altered, magpies (Pica pica) de-
creased mass and had decreased hematocrit levels and a de-
creased response to phytohemagglutinin (PHA; Cucco et al.
2002). The same response was noted in the hooded crow (Corvis
cornix; Acquarone et al. 2002). However, to date, immune func-
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tion has not been studied in birds that exhibited an anticipatory
increase in fat and body mass as a hedge against energy imbalance,
and relatively few features of immune function have been studied
in birds exposed to unpredictable resources (but see Buehler et al.
2008; Pap et al. 2010). On the basis of previous research on food
unpredictability in birds and the idea of strategic fattening, sev-
eral responses are possible.

If birds decline in body mass in response to unpredictable
food, then the variability in food resources might have a neg-
ative impact on immune function, as might occur if adequate
energy and nutrients for mounting an immune response are not
acquired (Martin et al. 2008). In birds, there are a number of
examples of persistent energy imbalance (intake < expenditure)
causing declines in immune function. These include food-
restricted sand martins (Riparia riparia) with a delayed-type
hypersensitivity immune response to PHA (Brzek and Konar-
zewski 2007) and house sparrow nestlings (Passer domesticus)
with a reduced acute phase response compared with control
birds fed ad lib. (Killpack et al. 2015).

If birds respond strategically to unpredictable food resources
with an increase in fat and body mass as a hedge against energy
imbalance, one possibility is that immune functions might be
maintained because the energy and nutrients for mounting im-
mune responses have been adequately sequestered. However,
because the sequestration of energy and nutrients might itself
come at a cost to other biological functions, declines in im-
mune functions might occur as a trade-off between using re-
sources for energy balance or maintaining immune function
(Lochmiller and Deerenberg 2000; i.e., a trade-off between
maintenance of the somatic state and the immune system).
Because various immune functions are thought to be associated
with quite different energetic costs, the situation might be com-
plex, with some immune components declining whereas others
are unaltered (Klasing 2004; Lee 2006). This is one reason to study
responses of a number of immune functions simultaneously.

It also seems plausible that a strategic response in birds could
occur with the immune system, analogous to strategic energy
budgeting, whereby certain components of the immune response
are downregulated during costly periods of the annual cycle (win-
ter), while others are maintained because of their necessity. For
example, during critical periods, it is hypothesized that there
should be a shift toward specific immunity and away from costly
components of the immune response (Lee 2006), and winter
might be considered such a critical period.

In this study, one of our goals was to determine the response
of the immune system in black-capped chickadees (Poecile atri-
capilus) to unpredictable food availability. We therefore exam-
ined black-capped chickadees during wintertime, when unpre-
dictable resources are a significant component of daily life. We
tested how experimental chickadees would respond in energy
budgeting and immune functions in response to unpredictable
food availability in comparison to those fed ad lib. We predicted
that if individuals faced with unpredictable food lost body mass,
then many/most immune functions would decline, as shown for
birds exposed to persistent energy imbalance. Alternatively, if
chickadees increased in fat and body mass as a hedge against

energy imbalance—as shown for some birds exposed to un-
predictable food—then we predicted that many/most immune
components would show no significant difference compared
with controls fed ad lib. In this specific case, if there were de-
clines in immune function, then we predicted that they might be
for the most energetically costly immune components (e.g., fever
response; Lee 2006). Whatever the responses, we also predicted
that it would likely take several days for the experimental birds
to adjust their energetic composition (body and fat mass) to
compensate for unpredictable food.

Methods
Bird Collection

Black-capped chickadees were captured near Rimouski, Quebec,
Canada, during January and February 2015; therefore, all birds
were considered to be after-hatch year (born after May 2014) or
older. Birds were collected via mist nets (Avinet, Dryden, NY) or
potter traps in the Forét d’Enseignement et de Recherche Macpes
(48.298, —65.547). All captured birds were placed individually
into cloth bags and transported back to the avian facility of the
Université du Québec a Rimouski (UQAR). Once in the animal
room, each bird was fitted with a unique color band and weighed
(%£0.01 g), and the wing chord and tarsus lengths were mea-
sured (+ 1 mm). Birds were housed individually for the course
of the experiment (41.3 x 41.9 x 32.4-cm cages). The room
was kept at a constant —15° * 2°C on a 10L:12D cycle. Pro-
cedures were approved by the UQAR Animal Care Committee
(CPA60-15-158).

Feeding Treatments

A total of 27 black-capped chickadees were brought into cap-
tivity, acclimatized for at least 5 d, and provided water ad lib.
and the following amounts of food daily: 13 + 0.3 g shucked
black-oil sunflower seeds, 1.5 *= 0.02 g (wet mass) frozen crick-
ets, and 0.41 * 0.01 g live mealworms. These amounts were
more than what was consumed on a daily basis (i.e., food was
provided ad lib.). During 4 d of the acclimatization period, all
orts (unconsumed food) were collected and dried in a drying
oven at 75°C for 48 h. Fresh food samples were also dried, and
daily dry mass intake was calculated as the difference between
dry mass of food offered minus dry mass orts. Following accli-
matization, birds were randomly assigned to two groups, con-
trols and experimentals (13 birds in the control group [two
female, 10 male, and one unknown] and 14 birds in the ex-
perimental group [four female and 10 male]; see “Molecular Sex
Determination”). Controls always received food ad lib. (ap-
proximately four times daily food intake), and they consumed a
total of 5.1 &= 0.2 g wet mass/day (table 1). Experimental birds
were provided with reduced food (65% of their respective ad lib.
consumption by mass, 63% by estimated metabolizable energy;
table 1) on some days and food ad lib. all other days. A random
number generator was used to determine the particular days of
reduced feeding (the same 10 d for all experimental birds) for
the entire course of the study (25 total days in the experiment).
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Reduced days were always followed by a day of feeding ad lib.
(i.e., no consecutive reduced days) because of animal welfare
concerns (see fig. 1A). Finally, food intake was measured in both
groups six times during the course of the study. For experi-
mental birds, this was done on 3 d on which provided food was
reduced and 3 d on which it was ad lib.

Molecular Sex Determination

Polymerase chain reaction (PCR) techniques were completed to
determine genetic sexes. All samples were submitted to the
University of Wisconsin-Madison Biotechnology Gene Expres-
sion Center, and methods were adapted from the protocol de-
veloped by Griffiths et al. (1998). This protocol utilizes the P2/
P8 primers which identify congenital heart defect genes asso-
ciated with either ZZ in males or ZW in females; therefore, one
band (350 bp) is amplified in males and two (350 bp and 450 bp)
in females (Griffiths et al. 1998; Ramsay et al. 2003). Each set of
PCR reactions was run in duplicate with a positive male control.

Sampling Protocol

On day 5 (fig. 1B) a constitutive blood sample (used to measure
complement lysis) was drawn from all birds, using a 27-gauge
needle from the brachial vein and collected in a 70-100 L
capillary tube with heparin as an anticoagulant. Blood samples
never exceeded 1% of the birds’ total body mass. Drops of whole
blood were smeared on microscope slides and stained for rou-
tine survey of basic white blood cell counts and various leu-
kocyte ratios (Demas et al. 2011; Owen 2011).

A

On day 8, birds were subjected to a PHA swelling assay to
assess delayed-type hypersensitivity. This was completed fol-
lowing the methods outlined by Smits et al. (1999). Briefly, all
birds were injected with 26 uL of a 1-mg/mL PHA-phosphate
buffered saline (PBS) solution (Sigma, L 9017) in the left wing
web. At the same time, birds were also injected with 26 uL of
sterile PBS solution in their right wing web. The left and right
wing webs were measured five times before injection and five
times 24 =+ 0.5 h after injection, using a gauge micrometer (No-
reen et al. 2011). Correcting post-PHA injection wing thickness
values with post-PBS injection wing thickness values (two-wing
technique) versus correcting with preinjection wing thickness
values (one-wing technique; Smits et al. 1999) did not yield
different results; we report values using the one-wing technique.

On day 12, a constitutive blood sample was taken (for com-
plement lysis), after which birds were injected intramuscularly
with 50 pL of a 1:1 solution of keyhole limpet hemocyanin (KLH;
Calbiochem, Darmstadt, Germany) and complete Freud’s ad-
juvant solution (Sigma-Aldrich; Killpack et al. 2015). Seven days
later, a second blood sample was taken to measure primary
antibody response.

In order to measure the fever response, on day 24 at around
4 p.m., chickadees in both groups were injected intramuscularly
with 24 uL of lipopolysaccharides (LPS) diluted in sterile PBS
(Millet et al. 2007; Killpack et al. 2015) at a concentration of
1.0 mg/g body weight to induce an acute phase response and
subsequently measure production of haptoglobin, an acute phase
protein. The next morning (16 = 0.4 h after LPS injection;
around 8:00 a.m.), a blood sample was taken from the brachial

Day 1

Experimental

Control

Constitutive

Catch and bring to 5 KLH ST
lab PHA swelling sample and blood LPS Injection
Start Constitutive KLH injection sample
feeding trial sample
Calculate food
intake
Day 0 1 5 89 12 19 24 25

Figure 1. A, Feeding schedule for experimental and control birds. Experimental birds received a reduced amount of food on selected days of the
study (open boxes; for details, see “Methods”). All other days of the study, experimental birds received food ad lib. (filled boxes). Control birds
received food ad lib. on every day of the study. B, Sampling timeline. Food treatment study began on day 1, after birds were acclimated and food
intake had been calculated for at least 4 d. Vertical lines represent when a component of the immune system was measured. All samplings were
done on both control and treatment birds. KLH, keyhole limpet hemocyanin; LPS, lipopolysaccharides; PHA, phytohemagglutinin.
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vein. Pre- and postinjection (16 h after LPS injection) cloacal
temperatures were measured (= 0.05°C; Physitemp, Clifton, NJ)
to assess the fever response. All blood samples were separated and
then stored at —20°C until analysis could be completed.

Measures of Body Composition

Throughout the study, total fat and lean mass were measured
using a quantitative magnetic resonance (QMR) EchoMRI ma-
chine (EchoMRI, Houston; Guglielmo et al. 2011; *0.01 g). The
QMR measurements were taken three times, and the average
was recorded on days 5, 15, and 22. Morning body mass (around
7:30 a.m.) was taken every other day on each bird throughout the
course of the study. Body mass was measured before each blood
sample or injection (*0.01 g).

Immune Assays

Complement Lysis. Constitutive blood samples were analyzed
for complement-mediated lysis ability. To measure complement
lysis ability, we used an in vitro assay that employs spectro-
photometry to detect complement lysis activity. We followed
methods previously outlined by Killpack et al. (2015; see Matson
et al. 2005; Merchant et al. 2006). Each plate obtained samples
from both groups and also multiple positive and negative con-
trols. Briefly, 20 uL of chickadee plasma were diluted into 60 uL
of PBS. Then 80 uL of a 2% rabbit red blood cell (RRBC) so-
lution was added to each sample dilution. Positive control sam-
ples were created by adding 20 uL of heat-inactivated plasma
diluted in 60 uL of PBS to 80 uL of a 1% Triton-X-100/2% RRBC
solution. Negative control samples consisted of a 1:1 PBS and
RRBC solution. Plasma blanks were created by adding 20 uL of
heat-inactivated plasma diluted in 60 pL of PBS to 80 uL of the
2% RRBC solution. All samples (and controls) were then incu-
bated in a water bath set at 56°C for 30 min. After incubation,
samples were centrifuged for 2 min at 2,000 g to form a pellet of
unlysed red blood cells. Forty microliters from each tube was
then loaded (in triplicate) onto a 96-well plate. The plate was
then read at 540 nm, and values are reported as percent lysed
[(optical density of sample — optical density of negative control)/
(optical density of positive control)].

Enzyme-Linked Immunosorbent Assay (ELISA) for IgY Anti-
bodies. Blood collected 7 d after the KLH injection was used to
measure primary antibody production for KLH-specific IgY
antibodies. Preinjection antibody levels and primary antibody
production were measured using an indirect ELISA and fol-
lowing methods outlined by Killpack et al. (2015). On each plate,
all samples, a PBS negative control, black-capped chickadee neg-
ative control, and black-capped chickadee strong-positive control
(from a previous validation trial) were plated in triplicate. A flat-
bottom, high-binding 96-well plate (Nunc, 442404) was coated
with 50 pL/well antigen (0.5 mg/mL KLH in coating buffer
[0.015 M Na,CO,, 0.035 M NaHCO;, pH 9.6]) and then incu-
bated at 4°C overnight. The plate was then washed with wash
buffer (PBS with 0.05% Tween) using a Biotek ELx405 microplate

washer and blocked with 100 uL blocking buffer (5% nonfat dry
milk with 0.5% Tween) for 1 h at 37°C. The blocking buffer was
then discarded, and 100 pL of sample serum (diluted 1:100 in
blocking buffer) was added to each well for a 1-h-long incubation
at 37°C. After incubation, the plates were washed with wash buffer,
and 50 pL of horseradish peroxidase-conjugated goat-anti-wild
bird IgG (Bethyl Laboratories, A140-110P) diluted 1:700 in wash
buffer was added to each well and incubated for 1 h at 37°C. Plates
were washed with wash buffer, and 100 uL of ABTS solution was
added and incubated for 10 min in the dark at room tempera-
ture. After incubation, 100 uL of 1% stop develop solution was
added to stop the reaction. The optical densities of the wells were
read at 405 nm, and absorbance values of the triplicate wells were
averaged. Average absorbance values for the postpriming sam-
ple were then corrected for background absorbance by subtract-
ing the average absorbance value for the preinjection sample from
the same bird.

Haptoglobin (Acute Phase Protein) Assay. Blood samples taken
after the LPS injection were used to measure the acute phase
response by analyzing haptoglobin (an acute phase protein)
levels. To measure haptoglobin, we used an in vitro spectropho-
tometric assay (Killpack et al. 2015). Haptoglobin was quanti-
fied (mg/mL) by using the protocol provided with a commer-
cially available kit (TP801; Tri-DD, Boonton Twp, NJ), with one
modification. Because of the hemolysis in some samples, we read
all samples at an absorbance of 540 nm after the addition of
reagent 1 (stabilized hemoglobin). Then regent 2 (chromogen)
was added, the plate was incubated for 5 min at room tem-
perature, and the final reading was at an absorbance of 630 nm.
Haptoglobin concentrations were determined using a standard
curve, which was based on absorbance at 630 nm obtained from
the five different haptoglobin concentration standards provided
by the kit. In a subsequent analysis, we controlled for any hemo-
lysis in samples—and thus an effect of that on the calculated
plasma haptoglobin levels—by including absorbance values at
540 nm as a covariate in an analysis of covariance (see “Statistical
Analyses”). Both the raw haptoglobin concentration values are
reported as well as the adjusted least squares means values (ad-
justed for any small differences related to absorbance at 540 nm).

Statistical Analyses

To examine whether total body mass, fat/lean body mass, and
complement lysis ability changed over time with respect to ex-
perimental group, we ran three separate repeated-measures
ANOVA models with group, sex, and date as categorical pre-
dictors and the interaction between group x date in the model.
When interaction effects or sex was not found to influence the
dependent variables, we removed them from the final models. In
no case was a main predictor (related to a specific hypothesis)
removed. In these and other ANOV As, we present the F statistic
with the corresponding degrees of freedom as subscripts.

The temperature and body mass response to LPS is reported
as a change in temperature and body mass, respectively, before
and after injection. Wing swelling is expressed as a change in



swelling (wing thickness after injection — wing thickness before
injection). We conducted two-way ANOVAs to test for the ef-
fects of the treatment on these and other immune responses. Ini-
tially, we measured the effects of treatment on the fever response
(temperature response and mass lost after injection), primary
antibody response (KLH injection), and delayed-type hyper-
sensitivity response (PHA wing swelling) with group and sex as
categorical predictors. Further, we conducted an ANCOVA to
test for the effect of treatment on haptoglobin levels (another
aspect of the fever response) with group and sex as categorical
predictors and absorbance values at 540 nm as a continuous
predictor. For both the two-way ANOVAs and the ANCOVA,
when sex was not found to influence the dependent variables,
we grouped all sexes for the final analysis. Additionally, we used
simple linear regression to determine whether change in fat mass
(last day — first day) was predictive for either the haptoglobin
response or the primary antibody response (KLH) as well as
ANCOVA with change in fat mass as the covariate. In the case
of wing swelling, we also conducted two post hoc, two-way
ANOVAs to determine whether there were differences among
groups between the swelling response due to PHA injection and
the swelling response due to PBS injection alone. Last, we con-
ducted a two-way ANOVA to test for the difference between
food intake in the two groups during the course of the exper-
iment, using group, type of feeding day (reduced vs. ad lib. in the
experimentals), and date as categorical predictors. Where ap-
plicable, we conducted Tukey’s post hoc analyses to make spe-
cific pairwise comparisons following ANOVAs. We consider a
trend to be reflected by 0.05 < P < 0.1, and P < 0.05 reflects a
significant difference. Data were analyzed using STATISTICA
(ver. 12; StatSoft 2003). All data presented are means = SEM,
unless otherwise stated.

Results

During the course of the study, three birds died, two of which
were controls (one male, one female) and one experimental
(male).

Responses in Energy Budgeting

Body mass of chickadees changed significantly over time (F,, 5, =
18.64, P<0.001), and experimental birds maintained significantly
higher mass over time compared with control birds (F, ,, = 4.37,
P = 0.05; fig. 2). Additionally, sex (F, ,, = 4.35, P = 0.05) and the
group X date interaction (F,, 50 = 5.43, P < 0.001) were found
to be significant predictors of body mass variation. After ex-
cluding days 1-7 because it appeared to take about 7 d for the
treatment to take effect, experimental birds maintained signif-
icantly more body mass over time (12.79 + 0.09 g) compared
with control birds (11.83 = 0.07 g; F,,, = 7.3, P = 0.014).
Experimental birds maintained significantly higher fat mass
over the course of the study (1.28 + 0.08 g; F, ,, = 32.64,P<
0.001; fig. 3) compared with controls (0.44 = 0.05 g), and this
increased after day 5 (F, 4, = 8.37, P = 0.001). Lean mass was
similar between the two groups (F, ,, = 0.06, P = 0.81) butdid
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Figure 2. Total body mass over the course of the study for control and
experimental birds. After 7 d of the study, treatment birds maintained
significantly higher body mass compared with control birds (see “Results”).
Error bars represent standard errors.

vary according to date (F, ,, = 102.01, P < 0.001), with birds
having higher lean masses later in the study (after day 5; data
not shown).

There was also a difference between groups with regard to their
total consumed metabolizable energy during the course of the
experiment (F, ;4o = 32.1, P < 0.001) and the type of day the
food was consumed (i.e., reduced vs. ad lib. for the experimen-
tals; F, 14 = 44.77, P < 0.001; table 1; fig. 4). Post hoc Student’s
t-tests revealed that this significant difference was driven by a
difference in consumption on reduced days (P < 0.001) but not
ad lib. days (P = 0.773). For group means for each immune and
body composition measure and complete statistical results, see
table 2.

Responses in Immune Function

Complement lysis ability did not differ significantly between
groups (F, ,, = 0.41, P = 0.53) but declined with date (F, ,, = 5.7,
P = 0.026; fig. 5A). After vaccination with LPS, experimental
birds had significantly lower values of haptoglobin concentra-
tion compared with controls (raw values; control: 0.53 = 0.02 mg/
mL; experimental: 0.41 + 0.02 mg/mL; F, ,, = 7.83, P <0.012)
and lost more mass (—0.596 = 0.1 g; F, ,, = 17.92, P < 0.001)
compared with control birds (—0.084 = 0.054 g; fig. 5B, 5C).
Haptoglobin levels were also significantly, positively related to
the absorbance values at 540 nm (F,,, = 12.45, P < 0.002);
however, when controlling for the effect of extra absorbance,
which was possibly due to some hemolysis, the control and ex-
perimental groups were still significantly different, with exper-
imentals havinglower haptoglobin levels (ANCOV A adjusted least
squares means; control: 0.52 # 0.02 mg/mL; experimental: 0.42 *+
0.02 mg/mL; F, ,, = 7.8, P = 0.011). Interestingly, haptoglobin
response (raw) was significantly inversely related to delta fat mass
0.007; fig. 6), although by
ANCOVA neither delta fat mass nor group were significant in
ANCOVA (P> 0.5, P = 0.18, and P = 0.17, respectively, for
interaction of delta fat mass and group). Experimental birds also

by simple linear regression (P =
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Figure 3. Fat mass on 3 d of the study for control and treatment birds.
Experimental birds had significantly higher levels of fat mass, as
measured by use of a quantitative magnetic resonance machine. Error
bars represent standard errors.

responded to injection of LPS by significantly decreasing their
body temperature (F,,, = 7.06, P = 0.01; —0.92° = 0.35°C;
fig. 5D), whereas control birds had no significant change after
injection (0.34° = 0.30°C).

Preinjection antibody levels and primary antibody response
(KLH injection) did not vary significantly between groups (F, 4, =
0.29, P = 0.59; fig. 5B). There was also no significant difference
between samples (preinjection vs. primary antibody response),
indicating that birds did not increase their antibody response
after injection with KLH (F, ,, = 0.41, P = 0.53). Antibody
responses did not vary with delta fat mass (data not shown).

After vaccination with PHA, there was no significant differ-
ence in wing swelling between experimental groups (F, ,; = 1.13,
P = 0.3; fig. 5F). However, when we analyzed groups indepen-
dently to examine whether there was significantly more swelling
due to PHA than PBS alone, we found that control birds showed
a trend toward a response to the PHA injection with more swell-
ing (F\», = 3.88, P = 0.06) compared with the PBS alone but
that experimental birds did not show a trend toward swelling
(F\,»s = 0.05, P = 0.83).

Discussion
Overview

The black-capped chickadees in this study were provided daily
either food ad lib. (control) or a reduced amount of food on
random days (experimental). The experimental group main-
tained higher body and fat mass during the study compared
with controls. While this result took about 7 d to occur, it sup-
ports the adaptive fattening response hypothesis proposed by
Witter et al. (1995), in which animals faced with periodic food
deprivation strategically increase fat reserves in order to buffer
themselves against the uncertainty of receiving adequate amounts
of food the following day. Given this arguably strategic energy
budgeting, we did not expect to see differences in chickadee
immune function compared with controls, except for possible
reductions in the most expensive immune functions (Lee 2006).
We discuss in more detail the strategic energy budgeting of the

chickadees and the varied responses of immune features that we
measured.

Energy Budgeting in Relation to Unpredictable Food

Although some studies in birds experimentally challenged with
unpredictable food found that birds lost mass (Acquarone et al.
2002; Cucco et al. 2002), strategic fattening seems to be the rule—
not the exception—in small passerines challenged with unpre-
dictable food availability (Bednekoff and Krebs 1995; Cuthill
et al. 2000). Our experimental chickadees never showed lower
body masses than the controls, though it took about a week of
the treatment—which included 3 d of reduced food—before their
body masses were significantly higher than in controls. The in-
creased body mass was achieved entirely by increases in body
fat, with no significant change in lean body mass.

It is interesting to consider the mechanism by which exper-
imental birds gained excess total body and fat mass. During the
course of the experiment, we measured food intake over 6 d
(three reduced and three ad lib. days). Control birds consumed
about 80 kJ/d metabolizable energy (fig. 5; table 1). This is sim-
ilar to that measured in chickadees housed in outdoor aviaries at
winter temperatures (Howitz 1981) and higher than the energy
expended by free-living chickadees in wintertime, measured
with doubly labeled water (66 kJ/d; Karasov et al. 1992). Exper-
imental birds were consuming similar amounts of food on ad
lib. days compared with control birds. Hence, their increase in
total body and fat mass must have been due to another mech-
anism, such as decreased metabolic rate, which other measure-
ments indicated (E. A. Cornelius, unpublished data), perhaps
achieved by reducing body temperature (Chaplin 1976; Lewden
et al. 2014) or decreased activity (Dall and Witter 1998). It is
intriguing that both our experimental chickadees and free-living
chickadees in wintertime appear to exhibit lower metabolism
than captive chickadees fed ad lib. held either outdoors (Howitz
1981) or indoors at low temperature (this study). That suggests
that both free-living chickadees and our experimental chickadees
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Figure 4. Estimated metabolizable energy consumed during the
course of the experiment. Data represent a full 24-h period. Arrows
indicate the reduced days on which significantly lower food intake was
measured. Experimental birds consumed similar amounts of energy
compared with control birds on ad lib. days.
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Table 2: Immune and physiological measures and summary of results of ANOVA or ANCOVA for the effect
of treatment on immune function and physiology of black-capped chickadees
Measure and day of study Control Experimental Factor F df P
Body mass (g):
1 11.77 = .22* 12.16 += .26 Group 4.37 1,20 <.05*
7 11.73 = .16* 11.91 + 23* Sex 4.35 1,20 <.05%
13 11.64 = .174 12.42 + 23° Day 18.64 11,220 <.001*
20 11.77 = .19* 12.75 + .23° Group x day 5.43 11,220 <.001*
Fat mass (g):
5 418 = .07 1.00 = .11 Group 32.64 1,22 <.001*
15 516 = .09 142 £ .12 Day 8.37 2,44 .001*
23 379 £ .08 1.37 £ .15
Lean mass (g):
5 8.62 = .16 8.81 = .24 Group .06 1,22 .81
15 9.5 £ .11 9.52 = .19 Day 102.0 2,44 <.001
23 9.53 = .14 9.69 = .2
Complement ability (OD):
5 105 = .02 103 £ .02 Group 41 1,22 .53
12 .031 £ .01 .074 = .02 Day 5.7 1,22 .026*
Haptoglobin (mg/mL) 521 + .02 397 = .03 Group 7.83 1,21 .011*
Absorbance 540 nm 12.45 1,21 .002*
KLH (OD):
Before injection 272 £ .01 273 £ .01 Group 29 1,44 .59
Primary response 287 £.02 289 = .02 Sex 1.46 2,44 24
Sample 41 1,44 .53
PHA (mm) .01 £ .01 —.0006 = .01 Group 1.13 1,23 3

Note. Results are provided from the initial repeated-measures ANOVA, where days 1-7 are included. Immune and physiological values are means + SEM.
Values for a given physiological measure that do not share the same letter are significantly different, as determined by Tukey’s post hoc tests. KLH, keyhole limpet

hemocyanin; OD, optical density; PHA, phytohemagglutinin.
*Significance at = 0.05.

may often behave in a similar strategic energy-conserving fash-
ion (Chaplin 1976; Lewden et al. 2014). Future studies should
examine these ideas as well as the mechanisms involved.

Immune Function in Relation to Unpredictable Resources

Given the black-capped chickadee’s strategic energy budgeting
(i.e., anticipatory storage of fat), we did not expect to see dif-
ferences in immune function of experimental birds compared
with controls, except for possible reductions in the most expen-
sive immune functions (Lee 2006). In many regards, this pre-
diction was confirmed, as we look across the five assays of im-
mune function that we used.

Complement lysis ability measures a constitutive ability to lyse
membranes of foreign cells. This ability along with constitutive
levels of IgY antibodies are both considered to be relatively low-
cost immune features (Lee 2006). Indeed, even in birds exposed
to continuous food restriction, these both may not be reduced
compared with controls fed ad lib. (see Killpack et al. 2015 and
references therein). However, one study did find that fasted re-
fed mallards (Anas plathyrhynchos) had decreased plasma IgY
and natural antibodies (Bourgault et al. 2009). Perhaps not sur-
prisingly then, we found no significant differences in either of
these immune features in experimental chickadees exposed to

periodic food restriction compared with controls fed ad lib. How-
ever, both groups decreased their complement lysis activity be-
tween days 5 and 12 of the study, which might reflect an effect of
handling manipulation, captivity, or progression of season. It is
also possible that these components of the immune system were
measured too soon after imposing the food restriction and that
it actually takes longer for this type of manipulation to cause an
impact (Hegemann et al. 2013; Fowler and Williams 2015).
The stimulated primary antibody response to KLH vaccina-
tion and the cell-mediated responses that are components of
the PHA swelling test are considered to have low to medium use
costs (Lee 2006). Neither of these assays in chickadees showed
significant differences between experimentals and controls. Counter
to our results, previous studies have found a significant reduction
in delayed-type hypersensitivity response in food-restricted birds.
For example, food-restricted sand martins (Riparia riparia) ex-
hibited a significantly decreased swelling response compared
with birds fed ad lib. (Brzek and Konarzewski 2007), and fasted
and sub-ad lib. fed yellow-legged gulls (Larus cachinnans) were
found to have a decreased cell-mediated response (PHA injec-
tion) compared with control birds fed ad lib. (Alonso-Alvarez
and Tella 2001; see also Love et al. 2008). However, in these
studies, food-restricted birds had decreased mass compared with
controls, which suggests that perhaps birds in a decreased con-



198 E. A. Cornelius, F. Vézina, L. Regimbald, F. Hallot, M. Petit, O. P. Love, and W. H. Karasov

A mDay 5
0.14
[ SDay 12
og 0.12
>
& o d
3] N
@ 0.08
2% N
2 2006 \‘\\\
3 NN
a 0.04 N N
=) \2\*»
NN
0.02 \KS\:
: NN
Control Experimental
014 C
@ 00
% 0.1 A
S, 0.2 1
2 03 -
S .04
=]
T 05 '[
S -06 1 l
g .07
(5]
-0.8 -
Control Experimental
035 1 E ®mBaseline
g OResponse
8 0.30 T
2 025 -
c
& 020
e
.. 015
el
[=}
£ 0410
-
@©
T~ 005
2
0.00 T !
Control Experimental

o
o
=}

=

04 -

0.3

Haptoglobin concentration
(mg ml)

0.1 1

Control Experimental

-

Body temperature change (°C)

Control Experimental

00207 F

Change in wing thickness (mm)
o o o o
o ©o ©o o
S & a2
o (93] o (4]
\

Control Experimental

Figure 5. Immune measures of complement lysis (A), haptoglobin concentration after lipopolysaccharides (LPS) injection (B), body
temperature response to LPS (C), body mass response to LPS (D), preinjection and primary antibody response to keyhole limpet hemocyanin
(KLH; E), and wing swelling response (F). C, D, and F are represented as delta values (i.e., change in response). Complement lysis ability
decreased significantly in control birds between days 5 and 12. Body temperature and mass declined in treatment birds after injection. Haptoglobin
levels were lower in treatment birds compared with control birds. There was no significant treatment effect on complement lysis, primary antibody
response, or wing swelling. Error bars represent standard errors. More detailed descriptions can be found in “Results.”

dition have a decreased immune response, whereas in our study
the experimentals had greater body mass than controls.
Energy costs are considered to be highest for local and sys-
temic inflammatory responses that include increased production
of proteins from the liver (Lee 2006; Owen-Ashley and Wing-
field 2007), and it was these types of immune responses—con-
centration of haptoglobin—that differed significantly between
experimental and control chickadees. Experimental birds exhib-
ited lower acute phase protein haptoglobin level after LPS vac-
cination. Studies examining food restriction have also noted a
decrease in haptoglobin concentration in food-restricted birds
(Killpack et al. 2015). However, it is also important to note that
one study examining energy budgets and immune function in
skylarks (Alauda arvensis) over the course of an entire annual
cycle did not find this same pattern; in fact, their research sug-

gests that this acute phase response is such an important aspect
of immune defense that it is constantly maintained (Hegemann
et al. 2013). The inverse correlation of declining haptoglobin
with increasing delta fat mass (fig. 5) seems consistent with the
hypothesis that unpredictability of food supply triggers a trade-
off between fat gain and this component of the immune system.
Besides reduced haptoglobin, experimental chickadees also had
a significant reduction in body temperature after LPS challenge
compared with control birds (similar to King and Swanson 2013).
We also saw a significantly greater mass loss after LPS vacci-
nation in experimental birds compared with control birds. It is
possible that the mass loss we observed was due to infection-
induced anorexia (Langhans 2000) and that this anorexia was
stronger in the experimental birds. Alternatively, is it possible
that experimental birds had a higher fever compared with con-
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23 and 5.

trols at a different time point than when it was measured and
therefore burned more energy during the night, because it has
previously been shown that the fever response to LPS differs
depending on the time of day (Skold-Chiriac et al. 2015). It also
seems plausible that greater reduction in consumed energy by
experimentals directly caused their greater mass loss, lower hap-
toglobin level, and greater reduction in body temperature.

Summary

In summary, experimental birds facing a cold environment and
an unpredictable source of food gained significantly more total
body and fat mass compared with birds given a food source ad
lib., indicating that these birds are able to strategically buffer
themselves against food uncertainty. During times of food un-
predictability, especially costly components of chickadees’ im-
mune responses—such as fever response—may be lessened. How-
ever, less costly components of the immune response were not
significantly influenced by food uncertainty, as was demonstrated
by a lack of difference between groups for lysis ability, con-
stitutive levels of IgY antibodies, primary antibody response, or
delayed-type hypersensitivity. Future studies should aim to shed
light on the mechanism behind the ability of food-restricted birds
to gain extra fat mass and whether food restriction affects other
components of immunity not measured here (especially second-
ary antibody responses).
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