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Abstract
Although assessments of winter carryover effects on fitness- related breeding 
 parameters are vital for determining the links between environmental variation and 
fitness, direct methods of determining overwintering distributions (e.g., electronic 
tracking) can be expensive, limiting the number of individuals studied. Alternatively, 
stable isotope analysis in specific tissues can be used as an indirect means of determin-
ing individual overwintering areas of residency. Although increasingly used to infer the 
overwintering distributions of terrestrial birds, stable isotopes have been used less 
often to infer overwintering areas of marine birds. Using Arctic- breeding common 
 eiders, we test the effectiveness of an integrated stable isotope approach (13- carbon, 
15- nitrogen, and 2- hydrogen) to infer overwintering locations. Knowing the overwin-
ter destinations of eiders from tracking studies at our study colony at East Bay Island, 
Nunavut, we sampled claw and blood tissues at two known overwintering locations, 
Nuuk, Greenland, and Newfoundland, Canada. These two locations yielded distinct 
tissue- specific isotopic profiles. We then compared the isotope profiles of tissues col-
lected from eiders upon their arrival at our breeding colony, and used a k- means clus-
ter analysis approach to match arriving eiders to an overwintering group. Samples 
from the claws of eiders were most effective for determining overwinter origin, due to 
this tissue’s slow growth rate relative to the 40- day turnover rate of blood. Despite 
taking an integrative approach using multiple isotopes, k- means cluster analysis was 
most effective when using 13- carbon alone to assign eiders to an overwintering group. 
Our research demonstrates that it is possible to use stable isotope analysis to assign 
an overwintering location to a marine bird. There are few examples of the effective 
use of this technique on a marine bird at this scale; we provide a framework for apply-
ing this technique to detect changes in the migration phenology of birds’ responses to 
rapid changes in the Arctic.
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1  | INTRODUCTION

The nonbreeding phase of the annual cycle is increasingly being recog-
nized for its impacts on individual fitness in animals, as many physiolog-
ical, behavioral, and life- history- related traits that influence breeding 
phenology and investment are shaped by the selective pressures 
 operating at this time, which can generate carryover effects (Greenberg 
& Marra, 2005; Williams, 2012). The study of carryover effects— 
especially how variation in overwintering experiences can impact 
subsequent reproductive performance, population processes, and 
fitness—is a burgeoning field of research that is central to testing 
hypotheses of behavioral, evolutionary, and physiological ecology 
(O’Connor, Norris, Crossin, & Cooke, 2014). Individual variation in 
overwintering location impacts foraging activity and physiological 
condition at arrival on the breeding grounds, and therefore an indi-
vidual’s preparedness for breeding (Descamps, Bêty, Love, & Gilchrist, 
2011; Marra, Hobson, & Holmes, 1998; Sorensen, Hipfner, Kyser, & 
Norris, 2009). As arrival condition and timing on the breeding grounds 
are key traits known to impact the breeding phenology and success 
of migratory birds (Bêty, Gauthier, & Giroux, 2003; Gunnarsson, Gill, 
Newton, Potts, & Sutherland, 2005; Hennin et al., 2016; Love, Gilchrist, 
Descamps, Semeniuk, & Bêty, 2010), determining how an individual’s 
winter  experience affects these traits is a key step in  understanding 
population- level processes.

Analysis of naturally occurring biochemical markers in tissues is a 
common means for discerning the overwintering activity and  locations 
of migratory species in terrestrial- based habitats, especially stable 
isotope ratios of 2- hydrogen (deuterium, δ2H), 13- carbon (δ13C), and 
15- nitrogen (δ15N) (Hobson, 1999; Norris, Marra, Kyser, & Ratcliffe, 
2005; Yerkes, Hobson, Wassenaar, Macleod, & Coluccy, 2008). 
Isotopic signatures reflect the environment in which a given tissue 
(and by extension the individual) grows (Bearhop, Waldron, Votier, & 
Furness, 2002; Bond & Jones, 2009) because these stable isotopes 
are integrated within an individual’s tissues through consumption 
of locally acquired water and food. Therefore, by matching tissue- 
specific  isotopic signatures to terrestrially delineated isotopic land-
scapes called isoscapes, stable isotopes have been successfully used 
to  determine the overwintering or breeding areas of many  terrestrial 
birds (Haché, Hobson, Villard, & Bayne, 2012; Hobson, 1999). 
Isoscapes of δ2H are generated as a result of predictable, regionally 
generalized  patterns of precipitation (Bowen, Wassenaar, & Hobson, 
2005; Mehl, Alisauskas, Hobson, & Merkel, 2005) and have proven 
useful for inferring the terrestrial overwintering grounds of various 
migrant bird species (Haché et al., 2012; Hénaux, Powell, Vrtiska, & 
Hobson, 2012; Hobson, Bowen, Wassenaar, Ferrand, & Lormee, 2004; 
Yerkes et al., 2008). Unlike deuterium, δ13C and δ15N isoscapes are 
generated by landscape- scale processes related to nitrogen cycling in 
the soil (δ15N) and the plant types present (δ13C) (Bond & Jones, 2009; 
Rubenstein & Hobson, 2004). Recently, δ13C and δ15N have been 
combined  together to infer the overwintering locations of migratory 
shorebirds sampled at coastal stopover sites along western Africa and 
Europe (Catry et al., 2016). Thus, it is possible to use multiple isotopes 
to assign individuals to a more specific location. For example, δ2H, 

δ13C, and δ15N were used to determine the staging and  overwintering 
areas of Alaskan northern pintails (Anas acuta; Yerkes et al., 2008), 
as well as the natal origins of five different species of European bat 
 species (Popa- Lisseanu et al., 2012).

The ability to apply stable isotope analysis to marine species is 
generally more challenging than terrestrial systems due to the highly 
dynamic nature of marine systems, which results in less predictable 
isoscapes, making isotope ratios collected from seabirds more difficult 
to define and interpret (Bond & Jones, 2009). To overcome the lack of 
reliable isoscapes in the marine environments, integrative ecologists 
have begun comparing the isotopic values from tissues in the species 
of interest with those occupying lower trophic positions (Mehl et al., 
2005) as a proxy for the isotopic signal of the environment. For exam-
ple, δ15N was used to infer the overwintering locations of breeding 
king eiders (Somateria spectabilis), by matching δ15N values in eider 
feathers, which were grown in winter, to signatures in copepod prey 
collected from two known overwintering areas located ~3,000 km 
apart (Mehl et al., 2005). A limitation to this approach arises when 
comparing dissimilar tissues types (e.g., blood versus feathers), or 
when making interspecific comparisons, as tissue-  or species- specific 
discrimination factors are required to accurately relate the isotopic sig-
natures of an animal to that of its prey (Bearhop et al., 2002; Bond & 
Diamond, 2011). This is because the incorporation of isotopes into dif-
ferent tissues varies as a function of their structural composition and/
or turnover rate, and because incorporation rates can also vary among 
species with differing metabolic rates, energetic requirements, and life 
histories (Bearhop et al., 2002; Haché et al., 2012). Discrimination fac-
tors that account for these factors are required to make meaningful 
interpretations; however, they are often not available or quantifiable 
for a given study. A potential solution for determining the nonbreed-
ing, winter location of a species is to characterize the isotopic signa-
tures using specific tissues from individuals collected at the known 
wintering areas (Norris et al., 2005). This method has the advantage 
of negating the need for discrimination factors as well as providing 
a baseline wintering reference signature to which samples collected 
from other individuals at a different time and location (e.g., on the 
breeding grounds) can be compared.

In this study, we identify wintering δ13C, δ15N, and δ2H isotope 
values for the northern common eider (Somateria mollissima borea-
lis, Figure 1.; hereafter “eider”), a migratory sea duck which spends a 
majority of its life on the ocean, with the aim to assign overwinter-
ing locations to individuals sampled at arrival on breeding grounds. 
Previous satellite tracking studies at the breeding colony of our study 
site (East Bay Island, Nunavut, Canada) have indicated that eiders 
migrate to, and spend their winter in, two general locations: off the 
southwestern coast of Greenland near Nuuk and northwards  toward 
Disko Bay, and along the coast of Newfoundland and Labrador, 
Canada (Mosbech et al., 2006). Beginning in late April, eiders leave 
their overwintering areas for the staging areas in and around north-
ern Hudson Bay, arriving there in late May traveling between 60 and 
130 km per day (Mosbech et al., 2006). Eiders move to the breeding 
colony in early to mid- June when the ice has begun to clear from 
the head of the bay (F. Jean- Gagnon, unpublished data). The two 
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wintering locations are markedly distinct with regard to their geology, 
community composition, and hydrology and thus provide an amena-
ble system in which to test predictions about isotopic differentiation 
in eider tissues, and make inferences about geographic distribution 
during the nonbreeding period in winter. Specifically, we first pre-
dicted that the δ15N signatures of eiders overwintering in Greenland 
would be greater than in birds from Newfoundland due to known 
differences in local circulation and nutrient enrichment patterns be-
tween the Labrador and West Greenland currents, and greater δ15N 
enrichment in Greenland (Rubenstein & Hobson, 2004). Second, be-
cause a large proportion of adult eiders in Greenland spend most of 
the winter in fjords while eiders in Newfoundland move along coastal 
areas and offshore islands, and δ13C differs with distance from 
shore and as a function of latitude (Cherel et al., 2008; Rubenstein 
& Hobson, 2004), we predicted that δ13C would be higher in birds 
overwintering in Greenland (Graham, Koch, Newsome, McMahon, & 
Aurioles, 2010). Finally, as precipitation is directly related to δ2H lev-
els (Bowen et al., 2005; Mehl et al., 2005), we predicted that the sub-
stantial freshwater inputs from melting glaciers in Greenland would 
result in lower δ2H levels in Greenland compared to Newfoundland 
(Bowen, 2010).

Studies using stable isotopes to assign overwintering sites for 
birds often use isotopes obtained from feather samples (Garcia- Perez 
& Hobson, 2014; Hobson, Van Wilgenburg, Wassenaar, & Larson, 
2012; Mehl et al., 2005). However, eiders undergo a near- complete 
postbreeding molt in the fall, before migrating to their overwintering 
locations, meaning these signatures would reflect molting rather than 
wintering sites. Therefore, after investigating differences in isotopic 
values of common eider populations, our second goal was to test 
whether blood or claw (toenail) tissues would be best used to infer 
overwintering origin of arriving eiders.

Our third goal was to determine whether we could assign unknown 
individuals arriving on the breeding grounds to specific wintering 
 locations using a k- means clustering method. Specifically, we tested 
several k- means clustering analyses using different combinations 

of the stable isotope data, to best classify our known winter eider 
samples to their correct overwintering location. Subsequently, we 
included samples collected from prebreeding eiders in these cluster-
ing analyses to assign overwintering locations to prebreeding eiders 
based on their isotopic signatures. With these results, we can discuss 
the resulting proportions of prebreeding eiders assigned to either the 
Greenland or Newfoundland overwinter groups and compare these 
to the  proportions expected from previous telemetry studies in our 
system.

2  | METHODS

2.1 | Study system

To characterize the isotopic makeup of each overwintering loca-
tion, eiders were sampled on their overwintering grounds (Figure 2). 
Eiders in Newfoundland (Change Islands; 49°57′N, −54°27′W) were 
collected by hunters and submitted to Environment and Climate 
Change Canada (Mt. Pearl, NL) between 23 December 2013 and 
17 January 2014 for a contaminants study. Additional eiders were 
collected from Newfoundland (Sunnyside; 47°48′N, −53°53′W), 
when several died after striking light standards at a coastal indus-
trial site on 01 April 2016 and were submitted to Environment 
and Climate Change Canada. In Greenland (Qussuk Fjord, Nuuk; 
64°76′N, −51°01′W), local fishermen collected eiders from fisheries 
bycatch between 15 April and 22 April 2014 and submitted them to 
the Greenland Institute of Natural Resources. Any eiders showing 
signs of decomposition or oiling were not sampled for this study. 
All eider carcasses were frozen at −20°C until dissection. Additional 
details about these collections, including sample sizes and the types 
of tissues collected, are summarized in Table 1. Arriving, prebreed-
ing eiders used to assign to wintering groups were captured at their 
breeding colony, East Bay Island (EBI), East Bay Migratory Bird 
Sanctuary, Nunavut, Canada (Figure 1; 64°02′N, 81°47′W), using 

F IGURE  1 A pair of common eiders on East Bay Island, Nunavut 
(Photograph: R. Steenweg)

F IGURE  2 Map of eider migration from the breeding colony 
at East Bay Island to overwintering areas in Greenland and 
Newfoundland. Winter sampling sites are denoted with red stars and 
East Bay Island with an orange star
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flight nets during the prebreeding period (11 June to 01 July 2014 
and 19 June to 04 July 2015).

2.2 | Tissue sample collection

The time period reflected by a specific tissue depends on the tissue’s 
turnover or growth rate (Hénaux et al., 2012; Oppel & Powell, 2010; 
Steenweg, Ronconi, & Leonard, 2011). In birds weighing ~1.5 kg, 
whole blood and red blood cells have a turnover rate of approximately 
3–4 weeks (Hahn, Hoye, Korthals, & Klaassen, 2012). Claws, however, 
do not have a turnover rate because they are metabolically inert and 
growth is continuous, and, for a mature duck, a typical claw will repre-
sent ~90–110 days of growth (Hopkins, Cutting, & Warren, 2013), as 
the tip of the claw is filed down by natural abrasion. Therefore, in ei-
ders sampled on their wintering grounds, the base of the claw should 
reflect the most recent growth and the most accurate wintering signa-
ture. For eiders collected at the breeding grounds, the full claw length, 
from tip to base, would reflect growth over the previous 3 months, 
which overlaps with their time spent within their core overwintering 
areas (Mosbech et al., 2006).

For claw samples collected from overwintering birds, total claw 
length was measured for each individual, and samples were clipped 
from the base of the claw on the middle toe of the left foot and stored 
in a paper envelope. For birds captured at the breeding site, the middle 
toe claw of the left foot was measured from base to tip to the nearest 
millimeter, and the distal 2 mm of the claw was clipped and stored in a 
small paper envelope for further analysis.

We also collected blood samples from wintering eiders to compare 
isotope levels between locations and within locations across years. Blood 
samples for wintering birds were collected from Newfoundland (Change 
Islands) and Nuuk, Greenland. Frozen whole blood was removed from 
the heart atrium or ventricle and stored in an Eppendorf tube for fur-
ther analysis. For prebreeding eiders at EBI, fresh 1 ml blood samples 
were taken from the tarsal vein using a heparinized 23- gauge needle and 
syringe, then stored in heparinized Eppendorf tubes and kept cool to 
approximately 4°C. This blood was collected as part of another project, 
and therefore, all samples were centrifuged at 6,700 g for 10 min, and 
red blood samples were separated from plasma, unlike in our wintering 
birds. Red blood cells were stored at −80°C until prepared for analysis.

2.3 | Laboratory analyses

To prepare samples for stable isotope analysis, blood samples 
were oven- dried at 50°C for 30 hr (winter eiders) or freeze- dried 
for 30 hr (breeding site samples). Although samples were dried 
using different methods, these two drying techniques have been 
shown to have no effect on stable isotope analysis results (Hobson, 
Gloutney, & Gibbs, 1997). All blood samples were lipid- extracted to 
reduce the effect additional lipids may have on the δ13C signatures 
(Mazerolle & Hobson, 2005), making whole blood and red blood 
cell samples comparable, and we removed surface oils from claw 
samples. To extract lipids and remove surface oils, all dried blood 
and claw samples were soaked in 2:1 chloroform:methanol solu-
tion (C:M) for 24 hr and then centrifuged for 10 min at 10,000 rpm. 
The C:M was siphoned off using a pipette, and then samples were 
rinsed again with C:M and centrifuged for an additional 10 min, and 
the C:M was siphoned off once more. Samples were then left open 
under a fume hood for 24 hr to allow any leftover C:M to evaporate. 
All blood samples were ground with a mortar and pestle into a pow-
der, and claw samples were snipped into tiny pieces. Subsamples 
were weighed to 0.3–0.5 mg and folded into a tin capsule for δ13C 
and δ15N analysis, and for δ2H analysis, subsamples were calibrated 
in the laboratory for 48 hr, weighed to 0.1–0.2 mg, desiccated in an 
oven at 100°C for 1 hr, and crushed into a silver capsule. Results of 
stable isotope analyses are reported in δ units where δ = [(Rsample/
Rstandard) − 1] × 1,000. Rsample are the ratios of the isotopes (i.e.  
C13/C12, N15/N14, and H2/H1) in samples, and Rstandard are the ratios 
of isotopes in the international standards, unique for each element 
(for carbon: Vienna Pee Dee Belemnite, nitrogen: Atmospheric Air, 
hydrogen: Vienna Standard Mean Ocean Water). Standards were 
run every five samples and duplicates were analyzed for every 
nine samples, with precisions of 0.2‰ for δ13C and δ15N analy-
sis and 3‰ for δ2H (Macdonald et al., 2012; Norris et al., 2005). 
Stable isotope analyses were performed at the Queen’s Facility 
for Isotope Research, Queen’s University (Kingston, ON, Canada) 
using a Costech ECS 4010 for δ13C and δ15N analysis and a Thermo 
Finnigan thermo- combustion elemental analyzer for δ2H analy-
sis coupled to a Thermo Finnigan DELTAplus XP Continuous- Flow 
Isotope Ratio Mass Spectrometer.

TABLE  1 Summary of samples collected from each location, the time period that tissues will reflect isotopically, and sample sizes (N)

Location Tissue Date of collection Time period reflected N N males N females

Newfoundland Claws April 2016 Winter 24 8 16

Whole blood December 2013 to 
January 2014

Winter 35 30 5

Nuuk, Greenland Claws April 2014 Winter 33 6 29

Whole blood April 2014 Late winter 34 6 29

East Bay Island Claws June to July 2014 Winter 109 0 109

Red blood cells June to July 2014 Spring migration 108 0 108

Claws June to July 2015 Winter 115 43 72

Red blood cells June to July 2015 Spring migration 125 51 74
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2.4 | Data analyses

To address our overarching goal and test our initial hypotheses that 
δ13C, δ15N, and δ2H values in blood and claws will differ between 
Greenland and Newfoundland samples, we ran separate two- factor 
ANOVA models to compare δ13C, δ15N, and δ2H values from wintering 
birds, using location and sex as factors. We ran a one- factor ANOVA 
for each isotope in eiders collected at East Bay in 2014 and 2015 to 
test for differences between years. There was no discernable annual 
variation in claw isotopes, and thus we pooled these tissues from 
2014 to 2016 for the wintering birds.

To address our second goal—to determine whether blood or claws 
are the best tissue to use for these analyses—we assessed whether 
stable isotopes of these samples overlapped for overwintering and ar-
riving eiders. The turnover rate for blood in birds of this size (Bearhop 
et al., 2002; Hahn et al., 2012; Steenweg et al., 2011) may be too rapid 
to be used in this circumstance. If this is the case, we would perform 
our k- means cluster analyses using the stable isotope signatures from 
claws.

To address our third goal of determining which isotopes are best 
included in the k- means clustering algorithm for later assigning an ar-
riving eider to its overwintering site, we tested a k- means clustering 
method for its ability to correctly classify known winter- sampled ei-
ders to their correct overwintering location based on the stable iso-
tope signatures in claws. This k- means approach is a centroid- based 
partitional clustering method, where the centroids are the arithmeti-
cally calculated centers of the clusters and k is the number of clusters. 
The initial centroids for each cluster can either be randomly selected 
or pre- assigned from the data (Tan, Steinbach, & Kumar, 2006). Each of 
the remaining data points is iteratively assigned to the cluster to mini-
mize the sum of squared error of each centroid (Tan et al., 2006). This 
method has been used previously on stable isotopes and other bio-
marker data to classify passerines (Garcia- Perez & Hobson, 2014) and 
marine mammals into discrete groups (Pomerleau, Lesage, Winkler, 
Rosenberg, & Ferguson, 2014). We defined the starting centroids from 
the means of isotope values obtained from individuals in each overwin-
tering location because previous studies indicate that eiders breeding 
at East Bay Island overwinter in two distinct regions (Mosbech et al., 
2006; Figure 2). The western Greenland overwintering group primarily 

overwinters near Nuuk; however, some migrate 600 km further north 
to Disko Bay. Because exploratory plots indicated a third potential 
group, we ran cluster analyses with both two and three clusters for 
both years, using the mean of the third group as the starting centroid 
for this new cluster. We conducted cluster analysis for each year sep-
arately because the presence of this third group varies between years.

Having predefined the starting centroids for the cluster analysis, 
we then ran the known identity, winter- sampled individuals through 
the cluster analysis to determine whether the analysis could correctly 
classify individuals to their original location/group. We elected to test 
k- means cluster analysis using all the stable isotopes (1) δ13C, δ15N, 
and δ2H, (2) δ13C and δ15N together, and then (3) only δ13C as two- way 
ANOVA results indicated that there was only a significant difference 
between groups in δ13C but not δ2H or δ15N (Table 2). We used the 
sum of the squared error to measure the quality of each clustering 
method (Tan et al., 2006), used the number of misclassified winter 
birds as a measure of its accuracy, and plotted the results to determine 
whether the clustering was realistic. All data analyses were conducted 
using R version 3.3.1 (2016- 09- 28) using packages cluster (Maechler, 
Rousseeuw, Struyf, & Hubert, 2016) and MASS (Venables & Ripley, 
2002).

3  | RESULTS

The δ13C, δ15N, and δ2H signatures from blood samples of the two 
groups of winter- caught eiders (Greenland and Newfoundland) were 
significantly different (p < .001 for each), but did not differ by sex 
(Table 2). Likewise, claw δ13C signatures differed significantly be-
tween the two groups (Table 2; p < .001), although δ15N and δ2H sig-
natures were not significantly different (Table 2; p = .70 and p = .80, 
respectively) and sex was not a significant factor (Table 2). Moreover, 
although we did not detect any annual variation in δ13C signatures of 
claws from birds captured at arrival in 2014 and 2015 (F1, 222 = 1.90, 
p = .17), both δ15N and δ2H signatures differed significantly across 
years (δ15N: F1, 222 = 6.29, p = .013; δ2H: F1, 217 = 6.36, p = .012).

Stable isotope signatures in the blood samples of eiders arriving 
at the breeding colony overlapped with those from wintering eiders 
from Newfoundland, but not with the wintering eiders from Greenland 

TABLE  2 Two- way ANOVA model results for isotope signatures in eiders sampled from the two overwintering areas for both whole blood 
and claws

Tissue Isotope

Means ‰ (SD)

df F value

Overall Location Sex

Nuuk, Greenland Newfoundland p p p

Whole blood δ13C −18.55 (0.90) −20.05 (0.51) 2, 67 35.89 <.001 <.001 .792

δ15N 10.19 (0.43) 10.88 (0.60) 2, 67 15.64 <.001 <.001 .709

δ2H −78.85 (6.91) −71.26 (7.33) 2, 67 11.6 <.001 <.001 .171

Claws δ13C −18.12 (0.60) −20.55 (0.58) 2, 55 119.6 <.001 <.001 .632

δ15N 12.98 (0.77) 13.14 (0.52) 2, 55 0.352 .704 .414 .987

δ2H −49.97 (9.27) −50.33 (7.04) 2, 55 0.221 .803 .785 .522

Significant relationships are bolded.
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(Table 3; Figure 3). Moreover, signatures from prebreeding birds were 
comparatively enriched in δ15N and depleted in δ2H (Table 3; Figure 3), 
suggesting they partially reflected signatures acquired during the mi-
gration period. Consequently, we used the stable isotope signatures 
from claws of prebreeding eiders to conduct k- means cluster analysis.

Tests of k- means cluster analyses using the stable isotopes found 
in the claws of winter- caught eiders minimized SSE and resulted in 
fewer misclassified wintering eiders when using the stable isotope 
δ13C alone (2014: 0 and 2015: 2 misclassified) as opposed to inte-
grating δ13C and δ15N (2014: 0 and 2015: 3 misclassified), or δ13C, 
δ15N, and δ2H values (2014: 29 and 2015: 28 misclassified; Table 4). 
For 2014 prebreeding eiders, the most parsimonious representation of 
groupings included three clusters (8 vs. 0 misclassified for 2 vs. 3 clus-
ters, respectively), where for the 2015 prebreeding eiders, two clusters 
yielded the best results (2 vs. 16 misclassified for 2 vs. 3 clusters, re-
spectively; Table 4). These two models suggest that in 2014, a total of 
79 individuals overwintered in Nuuk, Greenland, 13 in Newfoundland, 
and another 15 near Disko Bay, Greenland, while in 2015 it was es-
timated that 102 eiders overwintered in Nuuk, Greenland, and 13 in 
Newfoundland (Figure 4).

4  | DISCUSSION

Supporting our first goal, isotopic signatures were indeed significantly 
different between the two wintering groups. In contrast to a study on 
American redstarts (Setophaga ruticilla; Norris et al., 2005), blood sam-
ples did not reflect overwintering sites, but rather signatures prob-
ably obtained during spring migration likely due to the slow nature 
of eider migration to the breeding grounds at East Bay Island. Cluster 
analysis of stable isotope values in the claws of eiders, however, was 
more successful in differentiating between wintering locations, and 
using this technique, we were then able to infer the overwintering 
locations of eiders arriving at their breeding colony, which supports 
our second goal. Concerning our third goal, δ13C alone, and not the 
integration of δ13C with δ15N and δ2H, was most useful for differen-
tiating wintering locations, likely because these areas differ in habitat 
features known to affect δ13C values (marine coastal vs. inland fjord), 
and in latitude (Cherel et al., 2008; Graham et al., 2010; Rubenstein & 
Hobson, 2004).

K- means cluster analysis was effective for determining both the 
number of clusters to include for each year (2014 or 2015) and their 
respective centroids. Moreover, the method revealed a novel over-
wintering group and generated very few misclassified winter birds. 
Discriminant function analysis (DFA) is sometimes similarly used in this 
circumstance, but is not recommended with the use of spatial data 
where as clustering methods are (Zuur, Leno, & Smith, 2007). In com-
parison with DFA, k- means cluster analysis uses starting centroids to 
form the clusters, rather than DFA which provides limits from which 
the groups or clusters are formed. Secondly, because winter samples 
from the third inferred group from Disko Bay were unavailable, we did 
not have the boundaries to include in the DFA. Including the mean 
of this group as a starting centroid for k- means was a way to manage 
this issue. Nonetheless, one advantage of DFA over k- means cluster 
analysis is that DFA can assign a percentage of confidence to each 
individual’s assignment; however, given the infrequent misclassifica-
tion of winter birds, we are confident that k- means cluster analysis of 
δ13C adequately classified arriving eiders into their known overwinter-
ing groups. Overall, this work demonstrates that it is possible to not 
only back- assign individual eiders to their overwintering grounds using 
samples collected upon arrival at their breeding grounds, but also to 
detect potentially novel wintering grounds.

Although blood samples were obtained in January and April from 
Newfoundland and Greenland, respectively, we expected differences 
in isotopes to be applicable as samples were obtained within 4 months 
of each other, and the differences between locations would be bigger 
than between the different times. The differences between the two 
overwintering areas in blood and claws were similar, although a bit 
larger for claws. As such, we are confident that the differences in blood 
were due to their geographic location rather than the differences in 
timing.

The ability to back- assign seabirds and sea ducks arriving at the 
breeding colony to their overwintering locations is a major advance 
for studies of marine birds. This method has the potential to signifi-
cantly impact future studies investigating the carryover effects of 
migration behaviors on individual-  and population- level processes in 
a number of ways. First, future studies using these techniques can 
cost- effectively and relatively noninvasively determine overwinter-
ing location and therefore determine how variation in overwintering 
environmental conditions carryover to affect important reproductive 

TABLE  3 Summary of stable isotope signatures in eider blood and claws from individuals sampled during the prebreeding period at East Bay 
Island

Tissue Isotope

2014 2015

Means δ‰ (SD) Min δ‰, Max δ‰ N Means δ‰ (SD) Min δ‰, Max δ‰ N

Blood δ13C −18.17 (1.59) −19.77, −12.91 108 −18.87 (0.52) −20.28, −17.32 125

δ15N 12.38 (0.66) 10.60, 14.25 108 12.91 (0.92) 10.92, 15.21 125

δ2H −80.02 (6.61) −94.99, −64.93 107 −86.10 (6.57) −101.23, −70.06 121

Claws δ13C −17.92 (1.46) −20.43, −13.91 109 −18.13 (0.78) −20.28, −15.68 115

δ15N 12.90 (0.73) 11.47, 14.69 109 13.20 (1.07) 10.93, 16.31 115

δ2H −42.30 (10.73) −63.11, −11.75 106 −45.76 (9.72) −67.70, −20.83 112
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parameters. Second, once established as a baseline, this method 
can then be used to delineate populations and monitor any fluctu-
ations in these populations. For example, previous satellite tracking 
research (2001–2003) from this colony indicated that approximately 
40% of eiders overwintered in Newfoundland, Canada, and 60% in 
Greenland (Mosbech et al., 2006). We found that in both years, only 
about 10% of the eiders overwintered in Newfoundland, with dif-
ferent proportions arriving from Nuuk and Disko Bay, Greenland, in 
each year. In 2014, 14% of the eiders were detected to occupy a 
third overwintering cluster (Table 4). We suggest that these individu-
als are likely from Disko Bay, because more northern marine areas are 
enriched in 13- carbon (Hobson, 1999; Rubenstein & Hobson, 2004; 
West, Bowen, Cerling, & Ehleringer, 2006); therefore, δ13C is higher 
in Disko Bay compared to Nuuk as seen in shrimp (Pandalus borealis) 
and copepods (Calanus finmarchicus; Hansen, Hedeholm, Sünksen, 
Christensen, & Grønkjær, 2012). While the western Greenland 
breeding population has increased by 12% per year (Merkel, 2010) 
since the implementation of hunting quotas, the Newfoundland pop-
ulation has been potentially impacted by the same Avian Cholera 
outbreak that affected East Bay Island and other colonies along the 
Hudson Strait (Iverson, Forbes, Simard, Soos, & Gilchrist, 2016). 
This shift in proportion of eiders overwintering in Greenland versus 
Newfoundland may therefore be influenced by spillover from the 
Greenland population. Alternatively, the changes in proportions may 
be more reflective of the relatively small sample size (n = 25) from 
the satellite tagging study compared to this study. This emphasizes 

the importance of using isotopic methods to track changes in popu-
lation demographics and migration patterns. This could be especially 
important as climate change pushes animals out of traditional ranges 
or to become nonmigratory; new isotopic signatures in breeding in-
dividuals could indicate novel overwintering sites and direct future 
winter sampling.

4.1 | Implications for future applications

Using stable isotope analysis as an indirect tracking method, rather 
than direct tracking methods using instruments (e.g., satellite or GPS 
telemetry, geolocation.), has the potential to provide meaningful loca-
tion data while also allowing for larger sample sizes at substantially 
lower costs and simultaneously reducing the impact on the individual 
animals being tracked (Bowlin et al., 2010). Although the use of stable 
isotopes to infer overwintering origin is quite common in terrestrial 
species (Garcia- Perez & Hobson, 2014; Haché et al., 2012; Hobson 
et al., 2004, 2012; Miller, Wassenaar, Hobson, & Norris, 2012; Popa- 
Lisseanu et al., 2012; Rubenstein & Hobson, 2004; Yerkes et al., 
2008), individuals are often assigned by comparing isotope signatures 
in feathers to established carbon-  or hydrogen- based isoscapes. It 
is difficult to tailor this method for use in marine species, however, 
the more infrequently used approach of sampling individuals from 
their overwintering and breeding sites, and then subsequently test-
ing different tissues and isotope combinations can be applied across 
taxa. Alternatively, we suggest that this method could also be easily 

F IGURE  3 Scatterplot of stable isotope 
data for winter (Nuuk, Greenland, and 
Newfoundland)-  and prebreeding (East Bay 
Island)- caught eiders for both blood and 
claw tissues
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adapted to infer breeding areas to flocks of overwintering birds, if 
samples are collected at appropriate times.

Oppel and Powell (2008) provide an example of using head feath-
ers from king eiders in the western Arctic to assign individuals to over-
wintering areas. In marine birds where specific feather molt schedules 
may be unknown and in those species that undergo a near- complete 
full- body molt in the fall (Goudie, Robertson, & Reed, 2000), claws 
are well- suited tissues to sample to reflect overwintering signatures 
in both winter-  and prebreeding- caught individuals. Claws have a 
growth rate that is useful for both time periods, sampling is entirely 
noninvasive and will not impact flight like sampling flight feathers may 
(Swaddle, Witter, Cuthill, Budden, & McCowen, 1996), and they are 
easily collectable and therefore simple to include in sampling protocols. 
In addition, this method allows one to avoid having to use discrimina-
tion factors, which are required when comparing different tissues, and 
therefore reduces the ambiguity in our location estimations (Bearhop 
et al., 2002; Bond & Diamond, 2011). The use of 13- carbon in claws 
also simplifies the technique, as studies looking at 2- hydrogen need 
to consider the exchange of water within tissues (Hobson, Atwell, & 
Wassenaar, 1999).

For studies on marine birds especially, which are often long- lived 
and faithful to both their overwintering and breeding sites (Mallory, T
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F IGURE  4 Scatterplot of the results of one- dimensional k- means 
cluster analysis using the stable isotopes of carbon found in claws 
obtained from eiders during the prebreeding periods in 2014 and 
2015 and from their overwintering sites in Newfoundland, Canada, 
and Nuuk, Greenland. “Assigned” refers to prebreeding eiders 
assigned to their respective overwintering areas. Results are plotted 
against nitrogen for ease of visualization
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Gaston, Gilchrist, Robertson, & Braune, 2010; Reed, Harris, & Wanless, 
2015; Robertson & Cooke, 1999), we suggest that researchers com-
bine their tracking studies with analysis of multiple stable isotopes so 
that they can ground- truth stable isotope tracking methods simulta-
neously with telemetry tracking. In addition, researchers could use 
isotopes as a way of increasing their sample size to test whether the in-
dividuals they have specifically tagged are representative of the overall 
population. This would be especially useful in population delineation 
studies, a focus in marine bird research and among wildlife managers 
(Boyd, Bowman, Savard, & Dickson, 2015; Gilliland et al., 2009). The 
only drawback of the aforementioned tracking study of this breeding 
colony (Mosbech et al., 2006) is that the eiders were not sampled for 
stable isotopes in conjunction with satellite tracking, and therefore, 
we could not completely validate our winter assignment for arriving 
eiders. Ideally, tracked birds would be sampled for stable isotope anal-
ysis to test for differences between isotopic signatures in relation to 
where the tracking devices indicate they spend the period of time of 
interest to validate isotopic approaches. Of course, this method re-
quires that individuals are faithful to overwintering areas.

We recognize that isotopic baselines can have some isotope- 
specific temporal variation (Bowen, 2010; Rubenstein & Hobson, 
2004). For instance, atmospheric δ13C can fluctuate by as much as 
0.75 ‰ in higher latitudes within one year and has shown a total 
decrease of 0.25–0.5 ‰ over a ten- year period depending on the 
latitude (Bowen, 2010) as a result of ever- increasing CO2 emissions 
(West et al., 2006). In turn, these fluctuations in atmospheric δ13C can 
affect patterns reflected in the oceans. Consequently, we suggest fu-
ture studies aiming to assign individuals to an overwintering location, 
resample reference winter locations at least every five to ten years to 
account for these variations.

In summary, following our study design, we recommend that re-
searchers test the effectiveness of several stable isotopes to deter-
mine the best combination for their system. Nevertheless, using these 
types of isotopic assignment methods could replace costly (in terms of 
funds and impacts on individual birds) device- based tracking studies 
as a viable solution for increasing sample size, delineating populations, 
and monitoring more populations or species simultaneously. Indeed, 
these methods should be readily transferable to other life- history pe-
riods (i.e., breeding locations of groups of wintering birds). Further ex-
ploratory studies are needed to investigate the feasibility with pelagic 
seabirds; however, these methods are applicable to other sea ducks 
and more broadly to coastally feeding seabirds and shorebirds, and 
other marine animals.
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