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Abstract
Determining how environmental conditions interact with individual intrinsic properties is important for unravelling the 
underlying mechanisms that drive variation in reproductive decisions among migratory species. We investigated the influence 
of sea ice conditions and body condition at arrival on the breeding propensity, i.e. the decision to reproduce or not within 
a single breeding season, and timing of laying in migrating common eiders (Somateria mollissima) breeding in the Arctic. 
Using Radarsat satellite images acquired from 2002 to 2013, we estimated the proportion of open water in the intertidal 
zone in early summer to track the availability of potential foraging areas for pre-breeding females. Timing of ice-breakup 
varied by up to 20 days across years and showed strong relationship with both breeding propensity and the timing of laying 
of eiders: fewer pre-breeding individuals were resighted nesting in the colony and laying was also delayed in years with late 
ice-breakup. Interestingly, the effect of sea ice dynamics on reproduction was modulated by the state of individuals at arrival 
on the breeding grounds: females arriving in low condition were more affected by a late ice-breakup. Open water accessibility 
in early summer, a likely proxy of food availability, is thus crucial for reproductive decisions in a (partial) capital breeder. 
Our predictive capacity in determining how Arctic-breeding seabirds respond to changes in environmental conditions will 
require incorporating such cross-seasonal cumulative effects.
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Introduction

The trade-off between current investment in reproduction 
and survival remains one of the most prominent topics in 
ecological and life history theory (Williams 1966; Stearns 
1992; Ricklefs and Wikelski 2002; Sutherland et al. 2013; 
Kulaszewicz et al. 2016). Higher energy allocation to cur-
rent reproduction is expected to limit the energy available 
for somatic needs, resulting in downstream consequences to 
both future reproductive success and survival in iteroparous 
species (Stearns 1989, 1992; Harshman and Zera 2007). The 
largest expected drivers of reproductive investment are: (a) 
access to resources (interplaying with environmental sto-
chasticity) and (b) individual quality (Wilson and Nussey 
2010). A great deal of research has been dedicated to investi-
gating how these drivers govern life-history traits such as lit-
ter, clutch size, parental care or progeny survival (Williams 
1966; Van Noordwijk and de Jong 1986; Brown and Shine 
2002; Bustnes et al. 2002; Gagliano et al. 2007). However, 
early reproductive decisions such as breeding propensity 
(defined as the decision of whether to reproduce within a 
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single breeding season) have been less examined despite 
that it can also have tremendous impacts on subsequent 
survival and/or future reproduction (Faaborg et al. 2010; 
Cubaynes et al. 2011). For example, in many long-lived spe-
cies, individuals can skip reproduction until the following 
reproductive episode to avoid breeding costs that may jeop-
ardize their own survival (Rivalan et al. 2005; Souchay et al. 
2014; Legagneux et al. 2016). Although breeding propen-
sity is considered as a critical demographic parameter given 
its strong impact on both individual fitness and population 
growth (Cam et al. 1998; Sedinger et al. 2008), it is consid-
ered to be one of the most difficult reproductive parameters 
to properly estimate in vertebrates (Sedinger et al. 2001, 
2011) since non-breeders are often entirely absent from 
breeding sites (Spendelow and Nichols 1989; Chastel 1995; 
Reed et al. 2004;). Consequently, there are few studies on 
the mechanisms that mediate reproductive decisions (Bond 
et al. 2008; Souchay et al. 2014). For migratory species, 
the state of an individual upon arrival in the breeding area 
is a prevailing parameter governing individual variation 
in reproductive decisions (Drent and Daan 1980; Clutton-
Brock 1988; Blums et al. 2005; Descamps et al. 2011; War-
ren et al. 2014; Legagneux et al. 2016) and the probability of 
reproducing successfully should increase with a greater body 
condition at arrival (Rowe et al. 1994; Bêty et al. 2003; Hen-
nin et al. 2016). Individual state and reproductive decisions 
also depend on environmental conditions, and the effect of 
environmental conditions on breeding decisions and survival 
can moreover be modulated by individual state or quality 
(Öst et al. 2003; Robert et al. 2012).

Most Arctic ecosystems are driven by or depend upon ice 
dynamics (Post et al. 2013) and these have changed exten-
sively in recent decades in response to climate change and 
various anthropogenic activities (ACIA 2005). Changes in 
sea ice affect organisms that rely on ice cover for differ-
ent life functions (Stirling et al. 2004; Gaston et al. 2009; 
Gilg et al. 2012). Several studies have shown the impacts 
of variation in ice conditions on reproductive parameters 
of migratory seabirds breeding in the Arctic (Gaston and 
Hipfner 1998; Gaston et al. 2005; Chaulk and Mahoney 
2012). However, because of the general lack of knowledge 
on the underlying mechanisms generating variation in key 
reproductive decisions, no studies have to date examined 
the predicted interactive effects between ice dynamics and 
individual state prior to investment in reproduction on deci-
sions such as breeding propensity and phenology.

Here, we use a long-term study (2002–2013) of Arctic-
nesting common eiders (Somateria mollissima) to examine 
the interactive effects of individual body condition and sea 
ice conditions on reproductive decisions. This system is 
particularly useful for examining these questions because 
eiders can be captured at arrival from migration and prior to 
making breeding investment decisions (Hennin et al. 2015). 

Arctic-breeding eiders use a mixed capital-income reproduc-
tive strategy where they must gain enough body reserves 
prior breeding. Females rely partly on local resources 
acquired during the pre-breeding and laying period to build 
up body reserves (Sénéchal et al. 2011a) and produce their 
clutch (Descamps et al. 2011; Sénéchal et al. 2011a, b). 
Coastal habitats used by eiders are still largely ice-covered 
following their migratory arrival in the Eastern Arctic (Gil-
christ pers. obs.). Consequently, the timing of ice-breakup 
should drive food access in the vicinity of the breeding 
colony possibly impacting rate of condition gain following 
arrival. Individual state at arrival in the colony largely deter-
mines reproductive decisions. For instance, by experimen-
tally reducing body mass of pre-breeding female common 
eiders, a causal relationship was confirmed between body 
mass and breeding propensity (Legagneux et al. 2016) and 
between body mass and timing of breeding (Descamps et al. 
2011). We focused this present work on the breeding propen-
sity and breeding phenology of individuals in relation with 
sea ice condition. We anticipated that both the timing of sea 
ice breakup and individual body condition at arrival should 
influence reproductive decisions of female common eiders. 
Hence, we predicted that: (1) a late ice-breakup would result 
in a reduction in breeding propensity and delayed laying 
dates and, (2) females arriving in lower condition would: (a) 
have a lower breeding propensity and delayed laying dates, 
and (b) be more affected by a late ice-breakup. Finally, we 
tested for the effect of individual arrival date on breeding 
decisions.

Methods

Study area

The study was conducted at the East Bay Migratory Bird 
Sanctuary on Southampton Island, Nunavut, in the Cana-
dian Arctic (64°02′N, 81°47′W; Fig. 1). East Bay sup-
ports the largest known nesting colony of common eiders 
in the Canadian Arctic occurring on Mitivik Island (up to 
8000 pairs annually between 2002 and 2013). This small 
(400 × 800 m), low-lying (< 8 m) island is located in the 
middle of the bay at 5 km from the nearest coast. East 
Bay is characterized by landfast sea ice, defined as sea ice 
that forms and remains fixed along the coast (World Mete-
orological Organisation 1970; König Beatty 2007), which 
melts completely during the summer. This bay is shallow 
(< 30 m; Sénéchal & Bêty, unpublished data) and receives 
freshwater input from six rivers (Fig. 1). The flush of ter-
restrial water runoff in the spring accelerates local melting 
of seasonal sea ice in subarctic and arctic coastal ecosys-
tems (Dean et al. 1994; Ingram et al. 1996; Granskog et al. 
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2011) and this likely explains the initial melting of sea ice 
at river mouths at East Bay.

During the non-breeding season, common eiders from 
this colony migrate through Hudson Strait to winter in 
either southwest Greenland (~ 60% of population) or on 
the Labrador and Newfoundland Coast (~ 40% of popula-
tion; Mosbech et al. 2006). The first individuals to visit 
East Bay and surroundings arrive up to a month before 
the laying period begins and when the bay is still com-
pletely ice-covered (Mosbech et al. 2006; Bêty & Gil-
christ, unpublished data). As the season progresses and 
the sea ice at river mouths thaws, eiders forage on benthic 
invertebrates in open water at these locations and in the 
nearby associated ice leads (Bêty & Gilchrist, unpublished 
data; Sénéchal et al. 2011b). The ice cover breaks up in 
July and the ice floes are pushed in and out of the bay by 
tides, winds and currents, and the bay is entirely ice-free 
by early August. Importantly, female eiders that time lay-
ing so that the hatching of ducklings occurs a few days 
prior to entirely ice-free conditions have the highest prob-
ability of duckling survival (Love et al. 2010).

Eider reproductive data

Each year (2002–2013), we captured female eiders (87–335 
females annually) in flight as they passed over the nesting 
colony during their pre-breeding period in early June using 
large salmon gill nets suspended by cables. The trapping 
period lasted 3 to 4 weeks every year. We thus assumed that 
capture date was a good proxy of arrival date at the colony 
(Descamps et al. 2010). Individuals were weighed using a 
Pesola scale (± 2.5 g), banded (with both metal and alpha-
numeric colour bands) and marked with a unique temporary 
plastic nasal tag combination (Descamps et al. 2011). Body 
mass at capture was used as a proxy of female body condi-
tion (a measure of the individual state) at arrival since it has 
been demonstrated to be an adequate index of endogenous 
reserves (Descamps et al. 2011). Previous studies at our col-
ony have further demonstrated that a body mass threshold 
around 2000 g is required to initiate follicle development 
(Sénéchal et al. 2011a; Hennin et al. 2015).

We collected reproductive data (e.g. timing of nest ini-
tiation) by monitoring the colony from eight permanent 

Fig. 1  Maps outlining the location of the study area. The common 
eider colony is located on Mitivik Island, in East Bay, on Southamp-
ton Island, Nunavut, Canada. The six rivers flowing into the bay and 

the tidal buffer zone of 600 metres used to determine the timing of 
ice-breakup (proportion of open water) are also shown (in C)
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concealed observation blinds which facilitated consistent 
inter-annual behavioural observations. From these blinds, we 
could monitor marked eiders using spotting scopes. Because 
nasal-tagged females were easily identified at distance and 
since we monitored the colony twice daily for several hours, 
we could accurately identify and track individuals. We esti-
mated the breeding propensity of female eiders as follows: 
individuals captured and resighted on a nest in the colony 
were classified as breeders, while individuals that were 
caught and banded, but not resighted on a nest, were con-
sidered non-breeders (total number of females nasal-tagged 
at banding: N = 1751, 2002–2013). Since female eiders are 
highly philopatric (i.e. faithful to their natal and breeding 
area; Coulson 1984; Swennen 1990) and given that our col-
ony is geographically isolated from the closest large colony 
(> 200 pairs being > 200 km away), females not resighted 
on a nest on Mitivik Island have a lower chance to be breed-
ing elsewhere, and were thus categorized as non-breeders. 
Laying dates were calculated using only the first nesting 
attempt of nasal-tagged females (N = 780). Renesting fol-
lowing early nest failure is rare at East Bay (< 3.4% over 
12 years, Gilchrist, unpublished data). Only four individu-
als were recaptured twice in our dataset, we decided not to 
include a random factor to account for this pseudo-repli-
cation because we obtain similar results with and without 
those recaptured birds. A similar approach was recently used 
to measure breeding propensity in the colony (Legagneux 
et al. 2016).

To reduce disturbance to the colony, only brief visits to 
perform egg candling were made to improve the estimation 
of laying dates. The observation effort was highly compa-
rable between years considering the small size of the island 
and the eight blinds dispersed strategically throughout the 
colony, and this contributed to a high detection probability 
of nasal-tagged females. We could not use the reproductive 
data for 2010 in our analyses because of a high rate of acci-
dental nasal tag loss associated with the use of the wrong 
type of monofilament used to attach the tags. Although add-
ing the 2010 reproductive data did not extensively change 
the observed pattern, we decided to withdraw this year to 
reduce potential bias.

Monitoring of ice‑breakup

Information on sea ice conditions at East Bay for the period 
of interest (20 May to 31 July) was derived from RADAR-
SAT images acquired from the Canadian Ice Service (see 
methods in electronic supplementary material (1). To exam-
ine the timing of ice-breakup at river mouths in early June, 
we calculated the proportion of open water (percentage of 
open water, hereafter OW%) in a zone along the shoreline. 
This zone included the river mouths where eiders are known 
to forage during the pre-breeding and laying periods. To 

represent this area, we created a 600-m buffer zone extend-
ing offshore from the shoreline (1:250,000 digital vector; 
National Topographic Data Base, NTDB, Natural Resources 
Canada, https://geogratis.ca/, last accessed October 2014).
We tested different buffer sizes from 200 to 1000 m with a 
200-m step (the minimum resolution of our images). We 
limited the maximum buffer width to 1000 metres because 
we were interested by the sea ice melt at river mouths only 
(Sénéchal et al. 2011a). We used a 600-m buffer (the clos-
est value to the median). All buffers were highly correlated 
(r = 0.987, p < 0.001).

To generate an estimate of the OW%, we extracted the 
pixels of the radar images contained in the buffer using the 
Extract by mask Tool from the Spatial Analyst Extension in 
ArcGIS. The percentage of water pixels out of the total pix-
els of the buffer was then calculated to obtain the OW% for a 
given day. Once calculated for all images, we created a time 
series of OW% for each year (see electronic supplementary 
material, figure S1) and identified the day associated with 
a given OW% to quantify the annual timing of ice-breakup 
at river mouths. We tested multiple OW% (ranging from 1 
to 10% or 0.4 to 4 km2, respectively) to assess which OW% 
was most correlated to eider reproductive parameters and ice 
conditions. The OW% of 1% was selected as the best pre-
dictor of the timing of ice-breakup at river mouths because 
this was the minimal surface measurable with our satellite 
images and a small OW% represents a great access to ben-
thic foraging habitats. The OW% of 1% is therefore referred 
to as the timing of ice-breakup at river mouths in our study.

Statistical analysis

We tested the effect of both, (a) timing of ice-breakup at 
river mouths and (b) female body condition at arrival on 
the breeding propensity and the timing of laying of com-
mon eiders. Mixed models were used to quantify variation 
in breeding propensity and timing of laying because we 
had two hierarchical levels: eiders and ice-related param-
eters. We also statistically assessed year-differences of 
the time series (Pinheiro and Bates 2000). We included 
the arrival date at the colony as a covariate in our models 
to control for its effect on body condition at arrival and 
given that this parameter appears to directly influence 
eider breeding decisions at this colony (Descamps et al. 
2011; Hennin et al. 2016). We also tested for a quadratic 
effect for arrival date because if a general decrease in 
breeding propensity over time is the norm, we expected 
that birds could also pay a cost of arriving too early on 
the breeding ground (Nilsson 1994; Bêty et al. 2004). 
We performed mixed logistic regressions using a bino-
mial family to examine breeding propensity (0 = non-
breeder, 1 = breeder) using glmer function from the lme4 
package and AICcmodavg package (Mazerolle 2016) in 

https://geogratis.ca/
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R 2.15.3 (R Development Core Team). For the timing 
of laying, we used linear mixed models using lme func-
tion from the nlme package. The dispersion parameter 
for the breeding propensity model when considering a 
quasi-binomial distribution was close to 1 (ĉ = 0.98) indi-
cating that there was no significant over-dispersion in 
our model. For all models, the timing of ice-breakup at 
river mouths [ice-breakup], the arrival date at the colony 
[arrival], and the individual body condition of female at 
arrival [condition] were included as fixed factors while 
year was included as a random factor. We considered indi-
viduals as sampling units to take into account the variable 
response of individuals to explanatory variables rather 
than mean annual values. We examined the correlation 
matrices of explanatory variables to avoid multi-coline-
arity. No explanatory variables were strongly correlated 
(r < 0.5; Supplementary Table S2). We included all pos-
sible biologically relevant two-way interactions between 
covariates. For a retained significant interactions (*), the 
corresponding main effects were included in the model. 
Models combining various factors were ranked based 
on Akaike’s Information Criterion corrected for sample 
size (AICc) to find the most parsimonious model (lowest 
AICc value; Burnham and Anderson 2004). To evaluate 
the global fit for the models, we calculated a pseudo-R2 
based on the likelihood ratio using r.squaredLR function 
for the logistic model (breeding propensity). We also 
estimated the marginal and conditional pseudo-R2 using 
the r.squaredGLMM function for the linear mixed model 
(both functions from package MuMIn; Barton 2016). All 
values are presented as mean ± s.e.m.

Results

The sea ice melting patterns at the river mouths at East Bay 
showed inter-annual variability with years characterized 
by a rapid and early ice-breakup process (2005–2006) or a 
long and late ice-breakup punctuated by refreezing events 
(2004–2009; see electronic supplementary material, figure 
S1). The timing of ice-breakup at river mouths (i.e. date of 
1% of open water at river mouths—OW1%) varied over three 
weeks over the 12-year study period, from 10 June in 2006 
to 01 July in 2009 (see electronic supplementary material, 
Table S1).

Common eider reproductive parameters showed signifi-
cant inter-annual variation from 2002 to 2013. The prob-
ability that female eiders initiated reproduction (breeding 
propensity) varied from 60% in 2005 and 2006 to only 
33% in 2009 (average of annual means = 45% ± 14.2). The 
median laying date varied from 23 June in 2006 to 04 July 
in 2004 (average of annual medians = 29 June ± 0.21 day), 
i.e. within a narrower timeframe (< 2 weeks) overlapping 
the period of OW1% (see electronic supplementary material, 
Table S1). The timing of ice-breakup at the river mouths 
itself predicted annual variation in both mean breeding pro-
pensity (R2 = 0.35, F1,9 = 6.463; see Fig. 2a) and median 
laying dates (R2 = 0.67, F1,9 = 21.62; see Fig. 3a).

The most parsimonious model explaining individual 
variation in breeding propensity retained four explana-
tory variables including an interaction between the timing 
of ice-breakup and the arrival body condition of females 
(Table 1; other candidate models had a ∆AIC > 8). To 
illustrate the significant interaction between body condi-
tion and sea ice breakup, we used a cut-off at 2,000 g, a 

Fig. 2  The breeding propensity (%) of female common eiders in 
relation to a the timing of spring ice-breakup (day of 1% of open 
water—see methods) and b the arrival date at the colony. In a females 
were separated in two categories based on their arrival body mass 
(≥ or < 2000 g—see methods for justification) to illustrate the inter-

action between timing of ice-breakup and arrival body condition (see 
Table 2). Grey circle sizes are proportional to logN. Arrival dates are 
expressed in days relative to the annual mean arrival date. Logistic 
(a) and quadratic (b) regressions are fitted for significant (solid line) 
and non-significant (dotted line) relationships
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condition threshold required to initiate egg production in 
female common eider (Sedinger et al. 2011a; see meth-
ods). This interaction revealed that breeding propen-
sity varies according to the timing of ice-breakup only 
for females arriving in lower body condition (< 2000 g; 
βice-breakup = − 0.063 ± 0.027; N = 399; Fig. 2a) com-
pared to females arriving in higher condition (≥ 2000 g; 
βice-breakup = − 0.013 ± 0.0148; N = 1218; Fig. 2a). We 
also found support for a quadratic relationship between 
arrival date and breeding propensity (Table 1), with a 
lower probability for females arriving either relatively 

early or late compared to the yearly median arrival date 
(βarrival-date

2 = − 0.078 ± 0.014; Table 1; Fig. 2b).
The most parsimonious model explaining variation in 

laying date of common eiders included three explanatory 
variables (Table 2). Earlier laying dates were related with 
an earlier timing of ice-breakup at river mouths in June 
(βice-breakup = 0.199 ± 0.066, N = 780; Fig. 3a), individuals 
arriving earlier at the colony (βarrival-date = 4.20 ± 0.044; 
Fig.  3b) and those arriving in higher body condition 
(βcondition = − 0.0084 ± 0.0011; Fig. 3a). However, we found 
no evidence of an interactive effect between the timing of 

Fig. 3  The laying date of female common eiders in relation to a the 
timing of ice-breakup at river mouths (day of 1% of open water—
see methods) and b the arrival date at the colony. In a females 
were separated in two categories based on their arrival body mass 

(≥ or < 2,000 g) and grey circles sizes are proportional to log N. Lin-
ear regressions (solid line) are fitted for breeding propensity and tim-
ing of ice breakup and arrival

Table 1  (a) Variables, number of parameters, Akaike information criterion, ∆AICc, Akaike weights (ω) and pseudo-R2 for the four most parsi-
monious models explaining variation in breeding propensity of common eiders breeding at East Bay, Nunavut, Canada (2002–2013)

(b) First-ranked model parameter estimates, standard error (SE) and p-value
Logistic mixed models with year as a random factor. Models with ∆AICc > 20 were discarded from the Table. In the presence of an interaction 
between two factors, each individual factor was also retained in the model
Ice-breakup Ice-breakup at river mouth, Condition Body condition (mass) at arrival, Arrival date Relative arrival date

(a) Selected models for breeding propensity

Variables k AICc AAICc ω Pseudo-R2

Ice-breakup × condition + arrival date + arrival  date2 7 2112.18 0 0.98 0.22
Ice-breakup × condition + arrival date 6 2120.53 8.02 0.02 0.22
Condition + arrival date + arrival  date2 5 2123.53 11.36 0 0.21
Ice-breakup +condition + arrival date + arrival  date2 6 2124.38 12.2 0 0.21
Null 2 2389.39 277.21 0 0.03

(b) First-ranked model parameter

Parameters Ice-breakup Condition Ice-breakup × Condi-
tion

Arrival date Arrival  date2 Intercept

β − 3.20E−01 − 2.19E−02 1.51E−04 − 7.84E−02 − 7.80E−02 59.73
SE 8.75E−02 6.78E−03 4.02E−05 1.39E−02 1.40E−02 14.94
P < 0.001 0.0012 0.0002 < 0.0001 < 0.0001 < 0.0001
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ice-breakup and arrival body condition on individual laying 
date β = − 1.80e–04 ± 1.60e–04; Table 2; Fig. 3a).

Discussion

We provided evidence that breeding decisions in common 
eiders nesting at East Bay in Eastern Arctic depend on the 
interaction between individual energetic state at arrival and 
the timing of ice-breakup (a proxy of food availability). To 
our knowledge, this study is the first to examine the influence 
of such interactions on breeding propensity, a key reproduc-
tive parameter affecting population dynamics in long-lived 
species. Indeed, female breeding propensity was as low as 
33% and the laying date was delayed by as much as 12 days 
in years of late ice-breakup compared to the earliest ice-
breakup year. The influence of sea ice dynamics was depend-
ent on the state of individuals at arrival on the breeding 
grounds: females arriving in a lower body condition were 
more strongly affected by late ice-breakup. These interacting 
effects were only detected for breeding propensity but sea 
ice conditions also influenced the timing of breeding. Our 
findings highlight the importance of the timing and the body 
condition of individuals at arrival on breeding decisions for 
species that rely partly on stored resources during the breed-
ing season (Descamps et al. 2011).

Our results indicate that breeding propensity was influ-
enced by environmental conditions in seabirds and sug-
gest that failure to breed under unpredictable local condi-
tions may be an adaptive strategy to avoid costs to future 
reproduction and survival (Bonnet et al. 2002; Cubaynes 

et al. 2011; Robert et al. 2012). Female eiders arriving in 
a lower energetic state were more influenced (in terms of 
breeding decisions) by the timing of ice-breakup compared 
to females arriving in a better condition. Individuals arriv-
ing in a lower state, potentially as a result of severe moult, 
winter or early spring conditions (Descamps et al. 2010; 
Harms et al. 2015), are less likely to invest in reproduction 
if additional severe environmental conditions (such as late 
ice-breakup that restricts access to foraging) are encountered 
on the breeding grounds (Lehikoinen et al. 2006). In Mon-
teiro’s Storm-Petrels (Oceanodroma monteiroi) for instance, 
reproductive costs (measured through a reduction in sur-
vival) typically occurred in years of low food availability 
and affected only individuals of lower quality (Robert et al. 
2012). Not surprisingly then, favourable conditions on the 
breeding grounds can offset the carry-over effects of previ-
ously unfavourable environmental conditions (Legagneux 
et al. 2012). For female eiders arriving in a positive energetic 
state (i.e., over the threshold required to start developing fol-
licles, ca. 2000 g; Sénéchal et al. 2011a; Hennin et al. 2015), 
the timing of sea ice breakup did not significantly affect the 
breeding propensity. Overall, our measure of breeding pro-
pensity could potentially be under-estimated if poor quality 
individuals decided to breed elsewhere than in the study 
colony. However, this is very unlikely since eider females are 
highly philopatric to their breeding ground (Coulson 1984; 
Swennen 1990).

Among most bird species, early arrival on the breed-
ing grounds is generally associated with early egg-laying 
(Dalhaug et  al. 1996; Tombre and Erikstad 1996; Bêty 
et al. 2003) and may ultimately lead to a higher breeding 

Table 2  (a) Variables, number of parameters, Akaike information 
criterion, ∆AICc, Akaike weights (ω), and marginal and conditional 
pseudo-R2for the two most parsimonious models explaining variation 

in the timing of laying of common eiders breeding at East Bay, Nuna-
vut, Canada (2002–2013)

(b) First-ranked model parameter estimates, standard error (SE) and p-value
Linear mixed models with year as a random factor. Models with ∆AICc > 20 were discarded from the Table. In the presence of an interaction 
between two factors, each individual factor was also retained in the model
Ice-breakup ice-breakup at river mouth, Condition body condition (mass) at arrival, Arrival date relative arrival date

a) Selected models for timing of laying

Variables k AICc ∆AICc ω m-R2 c-R2

Ice-breakup + condi-
tion + arrival date

6 4758.37 0 0.75 0.31 0.37

Ice-breakup × condi-
tion + arrival date

7 4760.55 2.17 0.25 0.31 0.37

Null 3 4886.69 128.32 0 0 0.23

(b) First-ranked model parameter

Parameters Ice-breakup Condition Arrival date Intercept

β 1.99E−01 − 8.45E−03 4.20E+00 93.19
SE 6.62E−02 1.11E−03 4.43E−02 12.68
P 0.013 < 0.001 < 0.001 < 0.01
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success (Lepage et al. 2000; Newton 2006). Nonetheless, 
pre-breeding feeding sites may be limited when birds arrive 
too early in spring (Reed et al. 2004; Madsen et al. 2007) 
and hence potential costs of early arrival can counteract the 
apparent reproductive benefit. Few empirical studies have 
quantified potential costs of early arrival across multiple 
years varying in key environmental parameters (Bêty et al. 
2004). Our data show that the earliest arriving female eiders 
had lower breeding propensity than females arriving around 
the median arrival date. Individuals arriving first (i.e. late 
May) at our study site typically faced extensive ice cover in 
most years (see electronic supplementary material, figure 
S1, table S1) that would constrain their ability to access 
benthic marine prey resources. We also detected a decline 
in the breeding propensity over the season. As food acces-
sibility should increase over time as the ice recedes, we sug-
gest that this response cannot be generated by constraints 
in body condition gain alone, but could possibly reflect an 
effect of age given that young females often arrive later 
compared to experimented ones (Cristol 1995), and also 
be an adaptive strategy given the seasonal decline in the 
survival of juveniles (Daan et al. 1988). Indeed, duckling 
survival decreases sharply late in the season at our site (Love 
et al. 2010), making it less profitable for females to invest in 
reproduction regardless of their body condition. Individu-
als arriving late and that are unable to reach the minimum 
condition threshold in a short pre-breeding interval would 
be predicted to skip reproduction (Rowe et al. 1994). Such 
interplay between these two parameters was recently docu-
mented in our population: both timing of arrival and indi-
vidual physiological state in pre-breeding females predicted 
laying dates (Hennin et al. 2016).

Direct and indirect effects of variation in sea ice con-
ditions on the reproduction of polar seabirds have been 
observed through changes in diet and increased foraging 
costs (Gaston et al. 2005; Mallory and Forbes 2007; Emm-
erson and Southwell 2008), delayed laying date (Gaston 
and Hipfner 1998; Gaston et al. 2005; Chaulk and Mahoney 
2012; Descamps et al. 2015) and increased predation risk 
(Chaulk et al. 2007; Iverson et al. 2014). However, under-
standing the mechanistic links between variation in sea ice 
and reproductive parameters is complex because it involves 
the body condition of the birds which is partly determined 
by conditions experienced outside the breeding ground 
(carry-over effects) and by the food availability close to the 
breeding ground. Thus, the actual linkages often remain 
unclear for most species (Gaston et al. 2005; Lehikoinen 
et al. 2006; Love et al. 2010; Chaulk and Mahoney 2012). In 
our study system, the timing of ice-breakup at river mouths 
represents the first access to local prey resources available 
to eiders after their arrival from migration and prior to egg-
laying (Sénéchal et al. 2011a, b). Hence, a late ice-breakup 
likely induces extra foraging and travelling costs as birds 

seek foraging opportunities at longer distances. This could 
interfere with the pre-breeding energetic dynamics of female 
eiders by slowing down their rate of condition gain com-
pared to years with earlier ice-breakup.

In the context of ongoing global change, forecasting the 
effects of changes in sea ice conditions is challenging for 
migratory species breeding at high latitudes where abi-
otic conditions are known to be undergoing rapid and pro-
nounced change (Post et al. 2013). Local cues used to time 
migration and breeding may be less reliable in a changing 
environment (Walther et al. 2002; Visser et al. 2009). More-
over, despite the potential benefits of an early ice-breakup, 
warmer temperatures can indirectly and negatively impact 
the breeding decisions, nesting success and offspring sur-
vival of seabirds. Indeed, it has recently been shown that 
the increase in the duration of the ice-free period is directly 
linked to increases in polar bear (Ursus maritimus) predation 
at bird colonies (Rockwell and Gormezano 2009; Iverson 
et al. 2014), including the eider colony at East Bay (Iverson 
et al. 2014). Measuring and predicting the overall effect of 
changes in sea ice dynamics on seabird reproductive deci-
sions and predation risks is often challenging and warrants 
research to identify the long-term impacts at the population 
level and should be expanded to other marine and terrestrial 
species.
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