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• Common eider colonies vary in their
3-dimensional (δ15N, δ13C, THg)
niche size.

• Colonies with higher sea-ice cover had
higher δ15N, δ13C and THg.

• Colonies considered migratory had
higher median δ15N and THg, but lower
δ13C.

• Individuals with lower δ13C and higher
trophic positions had higher THg.
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Human industrialization has resulted in rapid climate change, leading to wide-scale environmental shifts. These
shifts canmodify foodweb dynamics by altering the abundance and distribution of primary producers (ice algae
and phytoplankton), as well as animals at higher trophic levels. Methylmercury (MeHg) is a neuro-endocrine
disrupting compound which biomagnifies in animals as a function of prey choice, and as such bioavailability is
affected by altered food web dynamics and adds an important risk-based dimension in studies of foraging ecol-
ogy. Multidimensional niche dynamics (MDND; δ13C, δ15N, THg; total mercury) were determined among breed-
ing common eider (Somateria mollissima) ducks sampled from 10 breeding colonies distributed across the
circumpolar Arctic and subarctic. Results showed high variation in MDND among colonies as indicated by
niche size and ranges in δ13C, δ15N and THg values in relation to spatial differences in primary production inferred
from sea-ice presence and colonymigratory status. Colonies with higher sea-ice cover during the pre-incubation
period had highermedian colony THg, δ15N, and δ13C. Individuals atmigratory colonies had relatively higher THg
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Nitrogen-15
THg
Climate change
Common eider
and δ15N, and lower δ13C, suggesting a higher trophic position and a greater reliance on phytoplankton-based
prey. It was concluded that variation in MDND exists among eider colonies which influenced individual blood
THg concentrations. Further exploration of spatial ecotoxicology and MDND at each individual site is important
to examine the relationships between anthropogenic activities, foraging behaviour, and the related risks of con-
taminant exposure at even low, sub-lethal concentrations that may contribute to deleterious effects on popula-
tion stability over time. Overall, multidimensional niche analysis that incorporates multiple isotopic and
contaminant metrics could help identify those populations at risk to rapidly altered food web dynamics.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Global anthropogenic activity has resulted in environmental shifts
within Arctic systems including rising air and ocean temperatures
(Zhang, 2005; Screen and Simmonds, 2010; Najafi et al., 2015), changes
in wind and ocean circulation (Timmermans et al., 2011), and a dra-
matic modification of sea-ice cover in marine systems (Johannessen
et al., 2004; Hoegh-Guldberg and Bruno, 2010; IPCC, 2019). These mul-
tiple stressors generate cumulative effects which have direct and indi-
rect influences on biological systems, ultimately having the potential
to affect food web characteristics including prey availability and selec-
tion (Vasseur and McCann, 2005; Frederiksen et al., 2006; Parmesan,
2006). Arctic marine food-webs have been particularly impacted, lead-
ing to abiotic shifts resulting in alterations of prey abundance and avail-
ability which have modified the foraging niche of higher trophic-level
organisms (Moline et al., 2008; Pecuchet et al., 2020).

The foraging niche of an organism includes both dietary and environ-
mental components, and therefore has been used to discern both trophic
roles by consumers and changes in their resource use (Newsome et al.,
2007). Studies examining foraging niche size (the spatial and trophic-
level range at which a group forages) have been used to investigate the
effect of phenological changes in primary production on predators
(Rabosky, 2009). In polar regions, changes in the abundance, distribu-
tion, and phenology of primary producers such as phytoplankton and
ice-algae can have effects on higher trophic-level wildlife (Frederiksen
et al., 2006; Kohlbach et al., 2016; Renaut et al., 2018; Lewis et al.,
2020). Sympagic-pelagic-benthic coupling drives energy flow between
the surface and benthic habitats andprovides a foundation for Arctic eco-
system functioning involving benthic consumers, but is being decoupled
due to changing sea-ice dynamics (Søreide et al., 2013; Kohlbach et al.,
2016; Yurkowski et al., 2020a). These shifts can generate bottom-up ef-
fects on the foraging ecology of higher trophic species, especially those
that rely on consuming resources that inhabit the sea floor (Leu et al.,
2011; Post et al., 2013; Post, 2017; Cusset et al., 2019).

A further consequence of changing marine ecosystems is shifts in
wildlife exposure to contaminants (Muir et al., 1999; Macdonald et al.,
2005; Stern et al., 2012). It is well established that Arctic marine food
webs are influenced by long-range transport of contaminants
(Macdonald et al., 2000; Braune et al., 2005; Kirk et al., 2012). On top
of this, melting of the cryosphere is releasing stored contaminants
from years of higher contaminant output into the current system
(Rydberg et al., 2010; Schuster et al., 2018; Hawkings et al., 2021).
Methylmercury (MeHg) is a biologically converted form of mercury
(Hg) and is a contaminant of concern due to its high bioavailability in
organic tissues and toxic effects at even low, sub-lethal concentrations
(Wiener et al., 2003; Whitney and Cristol, 2017; Evers, 2018). Uptake
of MeHg into wildlife can disrupt endocrine functioning, behaviour,
and reproductive success (e.g., Cardona-Marek et al., 2009; Chen and
Hale, 2010; Whitney and Cristol, 2017). Specifically, reproductive ef-
fects in birds include reduced clutch size, altered parental breeding be-
haviour and reduced hatching and fledgling success (Braune et al.,
2012; Tartu et al., 2013; Goutte et al., 2014; Hartman et al., 2019).

Climate change can affect the distribution and accumulation of Hg in
Arctic ecosystems (Stern et al., 2012;McKinney et al., 2015; Foster et al.,
2019). Further, changes in Arctic food web dynamics and trophic
2

relationships may shift the flow of Hg between organisms (Braune
et al., 2014). To study this, stable isotopes of carbon (δ13C) and nitrogen
(δ15N) are tracers that can provide time-integrated information on hab-
itat use and diet (Bearhop et al., 2006; Cherel and Hobson, 2007; Inger
and Bearhop, 2008). In coastal polar environments, δ13C provides die-
tary information on sources of primary productivity and foraging habi-
tat, for example, between 13C -depleted phytoplankton-derived
carbon and 13C -enriched sea-ice derived carbon (Hobson et al., 2002;
Kohlbach et al., 2016; Yurkowski et al., 2020a; Lewis et al., 2020). In ad-
dition, benthic or nearshore environments with macroalgae are typi-
cally enriched in 13C compared to pelagic or offshore sources (Hobson
andWelch, 1992; Hobson et al., 1995; France, 1995). Values of δ15N in-
dicates relative trophic level, with higher trophic levels associated with
increased δ15N values (Hobson and Welch, 1992). Thus, δ15N and δ13C
values can help determine environmental and dietary sources of Hg
due to varying uptake with carbon-source and trophic level (Atwell
et al., 1998; Cardona-Marek et al., 2009; Pomerleau et al., 2016;
Carravieri et al., 2017). However, while δ15N values relate to Hg concen-
trations, high variability in Hg still occurs among individuals despite
similar δ15N values (Atwell et al., 1998; Bearhop et al., 2000; DiMento
et al., 2019).

While isotope biplots consisting of just δ13C and δ15N capture an in-
complete portrayal of ecological niche due to the inclusion of only two
isotopic variables, a multidimensional niche, including three or more
total variables, can providemore information to assess foraging ecology,
albeit with greater complexity in interpretation (Swanson et al., 2015;
Hobson et al., 2015; O'Donovan et al., 2018). Therefore, including Hg
in niche analyses along with δ13C and δ15N provides a broader, risk-
based method to quantify an individual and population's foraging ecol-
ogy and multidimensional niche dynamics (MDND; Yurkowski et al.,
2020b). This analytical approach, combining stable isotopes and con-
taminants, has been applied to multiple taxa including mammals, fish,
and reptiles (Guzzo et al., 2016; Jackson et al., 2016; Purwandana
et al., 2016; Yurkowski et al., 2020b). However, aMDNDapproach to de-
termine niche size has not been investigated in seabirds despite them
being considered sentinels of ecosystem change (Le Bohec et al.,
2013). Arctic seabirds demonstrate varying foraging specializations on
a diversity of prey items reflecting climate-induced trophic shifts and
can inform spatial variation and temporal changes in sea-ice and
ocean dynamics that propagate up the food web, making them an
ideal model to research MDND (Pratte et al., 2019; Albert et al., 2021;
Renedo et al., 2020).

An inter-colony and inter-individual approach was used to examine
spatial variation in the 3-dimensional niche of common eiders
(Somateria mollissima, hereafter eiders). Eiders are a long-lived,
colonial-nestingmarine birdwith high sitefidelity andwidely dispersed
breeding populations across the Arctic. Across their range, eiders are
likely exposed to diverse environmental conditions that influence col-
ony demographics at varying intensities thatmay influence foraging de-
cisions and, although typically at low concentrations in eiders, Hg
exposure (Mallory et al., 2004, 2017; Jónsson et al., 2013; Goudie
et al., 2020; Noel et al., 2021). Eider prey primarily includes a diversity
of benthic invertebrates (e.g., urchins, mussels, and gastropods) as
well as pelagic macroinvertebrates to a lesser extent (e.g., amphipods;
Sénéchal et al., 2011; Kristjánsson et al., 2013; Waltho and Coulson,
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2015). The abundance and distribution of these prey groups vary spatio-
temporally and correlate with both predator Hg concentrations and
phenological shifts in primary production (Mouritsen et al., 2005;
Barber et al., 2015; Fort et al., 2016; Savoy et al., 2017). Thus, examining
δ15N, δ13C andHgniche dynamics of a costal, primarily benthic-foraging
species provides an avenue to investigate prey shifts and Hg exposure
(Sénéchal et al., 2011), as well as relative differences in ice algae and
phytoplankton-based food webs in relation to sea-ice cover (Søreide
et al., 2013; Kohlbach et al., 2016).

A 3-dimensional approach combining δ15N, δ13C and total Hg (THg)
measurements collected from individuals at 10 eider breeding colonies
located across their circumpolar rangewas used to evaluate variation in
eider foraging ecology and Hg exposure. It was anticipated that colonies
would show differences in 3-dimensional niche size which were influ-
enced by spatial differences in primary productivity (i.e., sea-ice algae
and phytoplankton) and migratory behaviour. To examine these possi-
ble drivers of colony-level variation in niche size, colony sea-ice cover
was examined during a period reflecting periods of isotopic integration
in blood. Specifically, it was predicted that colonies with higher sea-ice
cover would have smaller niche sizes than thosewith no sea ice present
due tomore restricted foraging habitat and likely less diverse prey avail-
ability (Yurkowski et al., 2016; Pratte et al., 2019). Niche size alongwith
colony migratory behaviour was also examined with a prediction that
eiders from resident colonies would have smaller niche sizes compared
to migratory colonies, given that residents remain at the same geo-
graphical location year-round and are likely exposed to a narrower
range of environmental conditions (Herrera, 1978; Gómez et al., 2016).

Next, as individual values and colony ranges of δ13C, δ15N and THg
provide important and unique information about foraging ecology,
these values were related to colony sea-ice cover during the pre-
breeding period when birds foraging at high rates to obtain body condi-
tion needed to breed. It was predicted that colonies with higher sea-ice
cover would have lower δ13C, δ15N and THg ranges due to restricted for-
aging locations available because of higher sea-ice concentrations. It
was also predicted higher individual δ13C related to ice algae presence,
higher THg due to greater environmental Hg via melting sea-ice, and
higher δ15N related to higher trophic level foraging through reduced
benthic access. Second, these metrics were related to colony migratory
status with the prediction that that migratory colonies would have
wider δ13C, δ15N and THg ranges due to a presumed broader distribution
and use of habitat. It was also predicted that higher individual THg, δ15N
and lower δ13C at migratory colonies due to foraging in areas with
greater year-round phytoplankton abundance.

Finally, the relationship between trophic position (the vertical place-
ment of an individual in the food-web based on prey and individual
δ15N values) and inter-individual δ13C values on THg concentrations
was examined with a prediction that THg would increase with higher
trophic position due to the biomagnification of THg, and lower δ13C
values because of a greater consumption of resources derived fromphy-
toplankton (Atwell et al., 1998; McMahon et al., 2006; Stern et al.,
2012). Examination of 3-dimensional niche size among eider colonies
allowed for identification of key environmental and behavioural factors
that may have influenced niche dynamics. Furthermore, MDND can be
used to infer colony-level variability in resource use and overall niche
diversitywhich allowed for broad predictions aboutflexibility and resil-
iency to environmental change (Vander Zanden et al., 2010; Paredes
et al., 2012; Smith and Reeves, 2012; Sydeman et al., 2012). As such, it
was also considered how this measurement of niche size may help pre-
dict the resiliency of eider colonies to environmental change.

2. Methods

2.1. Study sites and sample collection

Whole blood samples were collected from pre-incubating or incu-
bating eiders in 2018 at 10 breeding colonies (total number of
3

individuals = 240) across the Arctic and subarctic (spanning a longi-
tude from −147.776 to 35.774 and latitude from 78.918 to 43.645;
Fig. 1, Table 1). Eiders were captured using colony- and breeding
stage-specific techniques. Pre-incubating eiders were sampled at East
Bay Island (within in the Qaqsauqtuuq (East Bay) Migratory Bird
Sanctuary, Nunavut, Canada), whereas incubating eiders were sampled
at the other nine locations.

At East Bay Island, eiders were captured using large flight nets. Birds
were collected from the nets and a 1-mL tarsal blood sample was ob-
tained from each female eider (Hennin et al., 2015). These samples
were used for isotopic analyses and were collected using a 23G thin-
wall, 1-in. needle attached to a sodium-heparinized 1 mL syringe
(Lemons et al., 2012). After transferring to a heparinized 1.5 mL
Eppendorf tube, samples were kept cool (~10 °C), and within 8 h,
were centrifuged at 10,000 rpm for 10 min to separate red blood cells
(RBCs) and plasma. Plasmawas then transferred by pipetting into a sep-
arate cryovial and stored along with RBC samples at−20 °C until isoto-
pic analysis. During the same capture period as the first sample, a
second blood sample of 1-mL was obtained from the jugular vein
using 23G thinwall, 1-in. needles attached to heparinized 3mL syringes
to be used for Hg analysis. The whole blood sample was placed in acid-
rinsed cryovials and kept at ~10 °C, and frozen within 6 h of collection
until analysis.

At the other nine colonies, female eiders were captured on their nest
during incubation using either a bownet, noose pole or dogs (John's
Island location only; Milton et al., 2016). The specific incubation stage
could not be determined at all sites or for all individuals and was ex-
cluded from analysis. For most sites, a 200–1000 μL blood sample was
collected from the tarsal vein using a 23G thin-wall, 1-in. needle at-
tached to a heparinized 1 mL syringe. At the Alaskan site, up to 5 mL
of bloodwas collected from the jugular vein using a non-heparinized sy-
ringe, while at the Icelandic site, blood was collected from the brachial
vein. After collection, samples were kept cool and transferred to hepa-
rinized 1.5 mL cryovials. Generally, within 8–12 h samples were centri-
fuged for 5–10 min to separate red blood cells (RBCs) and plasma.
Plasma was then placed into a separate cryovial and stored along with
RBC samples at a minimum of −20 °C until analysis.

2.2. Stable isotope analysis

Stable isotopes of elements turnover at different rates based on die-
tary composition, metabolic rate and specific metabolic activity of the
tissue, as well as individual body size and temperature exposure
(Hobson and Clark, 1992; Carleton and Martinez del Rio, 2005). While
specific turnover times have not been established for eiders, for avian
blood components generally, plasma has a faster turnover rate that re-
flects recent diet (days), while the turnover rate of RBCs is slower and
reflects diet over a longer period (weeks; Hobson and Clark, 1992;
Hahn et al., 2012; Barquete et al., 2013). Further, δ15N and δ13C usually
have similar turnover times, hence are comparable (Bearhop et al.,
2002). Stable isotope ratios were measured in plasma of pre-
incubating eiders at East Bay Island, and in RBCs of incubating eiders
at the other nine colonies. Therefore, despite sampling colonies at differ-
ent life history stages, by using tissues with relatively shorter (plasma)
and longer (RBC) turnover times for analysis, we were able to compare
them within a similar stage including the pre-incubation period while
eiders are heavily foraging, either at resident sites or in the last period
of migration to build up stored resources for their incubation fast.

Samples were freeze-dried for approximately 72 h after collection.
Samples were then ground into a fine, homogenized powder using a
metal spatula cleanedwith acetone. Plasma sampleswere then lipid ex-
tracted using a 2:1 chloroform:methanol solution (Søreide et al., 2006).
Specifically, 2:1 chloroform:methanol solution (1.9 mL) was added to
100 μL of each plasma sample, which were then placed in a water
bath at 30 °C for 24 h. Samples were then centrifuged at 15,000 rpm
for 10 min to separate the lipid solution from the plasma pellet. A



Fig. 1.Map of the circumpolar-Arctic, and locations of the 10 common eider colonies used in this study (stars) designated by whether a colony is primarily resident (circles) or migratory
(stars). Shape colour represents four groupings of similarmedian 3-dimensional niche size (95% Bayesian credible intervals). By ascending niche size, colours represent: 1 (smallest; red), 2
(white), 3 (grey), and 4 (largest; black). Dashed line indicates the Arctic Circle, and the solid line indicates the Arctic boundary according to the Arctic Monitoring and Assessment
Programme (AMAP; map provided by Hugo Ahlenius). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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p1000 pipettewas used to remove the lipid solution, leaving the plasma
pellet behind. The pellet was washed again with an additional 1.9mL of
the chloroform:methanol solution and centrifuged for a final 10 min at
15,000 rpm. The remaining lipid solution was removed, leaving only a
plasma pellet. Samples were left open in the fume hood for 24 h to
allow for any remaining chloroform:methanol solution to evaporate.
Since RBCs have minimal lipids present, they did not undergo lipid ex-
traction (Hobson and Clark, 1992).

Plasma and RBC samples were weighed into individual tin-capsules
using a 4-digit balance to obtain 0.3–0.5 mg of sample. Plasma samples
were prepared at the University of Windsor, and plasma stable isotopes
were analysed at the Environment and Climate Change Canada Stable
Isotope Laboratory in Saskatoon, Saskatchewan, using continuous-flow
Table 1
Locations of common eider colonies included in this study, sample size (number of individual
(latitude and longitude), whether a colony is known to be predominately migratory or resident
priate timeframe reflecting isotope data.

Location n Sampling
month

Kaktovik, Alaska 33 July
Breiðafjörður, Iceland 23 June
Christiansø, Denmark 25 May
Grindøya, Norway 17 June

John's Island, Canada 19 July
Kirkjubøhólmur, Faroe

Islands
16 July

Kongsfjorden, Norway 16 June
East Bay Island, Canada 43 June

Onega Bay, Russia 24 June
Tern Island, Canada 24 June
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isotope-ratio mass spectrometry (CFIRMS; Harris et al., 1997). Samples
were weighed into pre-combusted tin capsules. Encapsulated plasma
was combusted at 1030 °C in a Carlo Erba NA1500 or Eurovector 3000
elemental analyser. The resultingN2 and CO2were separated chromato-
graphically and introduced to an Elementar Isoprime or a Nu Instru-
ments Horizon isotope ratio mass spectrometer. Two reference
materials were used to normalize the results to VPDB and AIR: BWBIII
keratin (δ13C = −20.18, δ15N = +14.31‰, respectively) and PRCgel
(δ13C = −13.64, δ15N = +5.07‰, respectively). Within run (n =
5) precisions as determined from both reference and sample duplicate
analyses were ± 0.1‰ for both δ13C and δ15N.

The RBC samples were prepared for isotope analysis at La Rochelle
University, France, and were analysed at the LIENS Institute (La
birds from each colony included in the study), month samples were obtained, coordinates
, and the proportion of sea ice cover in a 100 km area around the colony during the appro-

Latitude Longitude Migratory
behaviour

Sea ice cover
(%)

70.340 −147.776 Migratory 43.45
65.078 −22.736 Resident 3.10
55.330 15.188 Migratory 0
69.633 18.844 Resident 0
43.645 −66.041 Migratory 0
61.950 −6.799 Resident 0

78.918 11.910 Migratory 0
64.023 −81.790 Migratory 34.34
65.048 35.774 Resident 0
69.547 −80.812 Migratory 36.47

https://www.grida.no/resources/8352
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Rochelle, France) as detailed in Fort et al. (2014). Plasma and RBC sam-
ples were combusted using a Eurovector 3000 (Milan, Italy) elemental
analyser which results in production of N2 and CO2 gases. These were
separated by gas chromatography and introduced into a NU Horizon
(Nu Instruments, Wrexham, UK) triple-collector isotope-ratio mass-
spectrometer via an open split. Ratios of carbon (13C/12C) and nitrogen
(15N/14N) were expressed in typical delta notation (δ) as per mil (‰)
deviation from the primary standards (Vienna Pee Dee Belemnite
(VDPB) and atmospheric nitrogen (AIR), respectively). Replicate mea-
surements (n = 20) per run of laboratory standards (USGS-61 and
USGS-62) indicated that the measurement accuracy was <0.2‰ for
both δ15N and δ13C values.

Baseline stable isotopes of Arctic marine food webs vary spatiotem-
porally, thus measured δ13C and δ15N values of biota from different re-
gions can only be compared if corrected for such baseline variance
(Bowen, 2010; Hobson et al., 2012; de la Vega et al., 2019). Based on
previously published δ13C and δ15N values of known eider bivalve
prey at the different breeding sites, stable isotope data was corrected
by subtracting baseline bivalve isotope values from the eider tissue
values to obtain “corrected” isotopic values (Table 2). However, THg
values were not corrected to baseline values. Additionally, we were un-
able to account for the potential impact of incubation stage on δ15N, δ13C
or Hg values. Both Hg and δ15N values can be elevated in blood due to
mobilization of internal nutrient stores during the incubation fast
(Hobson et al., 1993; Wayland et al., 2005). However, use of RBCs in-
stead of plasma at all but one site (East Bay Island) to determine incu-
bating female δ15N values minimized this effect (Cherel et al., 2005).
Furthermore, sampling of eiders during incubation, when Hg is known
to increase (Wayland et al., 2005), lessens, but does notmitigate the po-
tential bias of East Bay Island pre-breeding eiders having elevated Hg
relative to the other colonies, as the pre-breeding eiders have not yet
depurated Hg to their eggs during laying (Akearok et al., 2010). Hence,
caution should be taken when comparing Hg values between East Bay
Island and the other nine colonies.

Diet-tissue isotopic discrimination factors allowmodeling of isotopic
trophic positions or nutrient source tracing (e.g., Wolf et al., 2009;
Federer et al., 2010; Bond and Diamond, 2011). Such factors have not
been established for common eiders, so those reported by Federer
et al. (2010) for spectacled eider (Somateria fischeri) (plasma: +4.9‰;
RBC:+4.0‰) were used. Trophic positionwas calculated using baseline
δ15N bivalve values for the individual's colony (δ15Nbase), discrimination
factors from the respective tissue of spectacled eiders (δ15NTDF; Federer
et al., 2010), trophic position (TP) of baseline prey values (TPbase; value
of 2 consistent with eider prey), and the non-colony corrected δ15N
values for that individual eider (δ15Neider; Hobson and Welch, 1992;
Vander Zanden et al., 1997; Vander Zanden and Rasmussen, 1999).

TP ¼ δ15Neider – δ15Nbase

� �
=δ15NTDF

� �
þ TPbase
Table 2
Isotopic signatures (δ13C, δ15N in‰) of typical common eider bivalve prey as determined by the
stable isotope data was used to correct common eider isotope data to allow for inter-colony co

Location Prey species

Beaufort Sea, Alaska Cyrtodaria kurriana
Breiðafjörður, Iceland Mytilus edulis
Christiansø, Denmark Limecola balthica
Grindøya, Norway Hiatella arctica

John's Island, Canada Mytilus edulis
Kirkjubøhólmur, Faroe Islands Mytilus edulis

Kongsfjorden, Norway Hiatella arctica
East Bay Island, Canada Hiatella arctica

Onega Bay, Russia Styela rustica
Tern Island, Canada Hiatella arctica
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2.3. THg analysis

Whole blood collected at East Bay Island was sent to the Research
and Productivity Council (RPC) in New Brunswick, Canada for THg anal-
ysis. Each sample was prepared by microwave-assisted digestion in ni-
tric acid (SOP 4.M26). Mercury was then analysed by cold vapour
atomic absorption spectroscopy (AAS; SOP 4.M52 & SOP 4.M53) to ob-
tain THg concentrations. Quality assurance/control procedures included
analysis of four reagent blanks as well as four randomly selected dupli-
cate samples. Previous quality assurance/control procedures using CRM
(certified reference materials) were conducted on common eider sam-
ples from East Bay in previous sampling years (Provencher et al., 2016,
2017). Mercury concentrations were converted from wet weight to
dry weight for comparison with the other colonies following known
equations and moisture values for avian blood at 79% (Eagles-Smith
et al., 2008).

For the remaining nine colonies, THg analyses were conducted at
LIENSs Institute using RBCs separated from plasma collected from incu-
bating females. These eiders were captured while incubating (Hanssen
et al., 2002; Bottitta et al., 2003; Sénéchal et al., 2011), thus by collecting
and analysing RBCs alone, the timeframe which the RBCs represent
(weeks) alignswith the timeframe represented in the East Bay Island ei-
ders (days) since whole blood has a turnover rate approximately inter-
mediate of plasma and RBC (Cherel et al., 2005). Therefore, this provides
justification for including the colony in our analysis despite potential
differences in physiology due to their reproductive stages. Freeze-
dried blood was analysed using an Advanced Hg Analyser spectropho-
tometer (Altec AMA 254). A quality control program included running
blanks prior to the analysis at the limit of detection of 0.05 ng of Hg. Cer-
tified referencematerials (DOLT-2 and TORT-2)were analysed every 15
samples (certified Hg concentrations: 0.44 ± 0.18 μg/g dw for DOLT-2
and 0.27 ± 0.06 μg/g dw for TORT-2, measured concentrations: 0.44
± 0.01 μg/g dw for DOLT-2 and 0.26 ± 0.01 μg/g dw for TORT-2). Sam-
ples were analysed for THg since Hg exists as primarily MeHg in avian
blood (near 1:1 ratio; Wiener et al., 2003; Rimmer et al., 2005).

2.4. Statistical analysis

Colony 3-dimensional niche size (using THg, δ13C and δ15N) and
ranges along the THg, δ13C and δ15N axes were determined for 10
eider colonies using the R package nicheROVER v1.0 (Swanson et al.,
2015) in R version 3.6.2 (R Development Core Team). NicheROVER
uses Bayesian statistical methods to calculate a multidimensional
niche region in multivariate space that represents the spatial breadth
and placement of a group's (i.e., colony's) niche in relation to other
groups, and infers the niche size of each group based on that group's in-
dividual values for each dimension (Swanson et al., 2015). Since the var-
iables are in different units (δ13C and δ15N: ‰ vs. THg: μg/g dw), all
values were scaled and centred by subtracting the mean for each vari-
able and dividing it by the standard deviation, thereby standardizing
all data. To determine if there were any correlations among variables
most spatio-temporally appropriate literature values available at the time of analysis. Prey
mparison.

δ13C (‰) δ15N (‰) Reference

−25.20 7.90 Dunton et al., 2012
−19.60 7.40 Sarà et al., 2007
−20.40 7.20 Ek et al., 2018
−19.32 7.26 Fredriksen, 2003
−19.99 7.17 English et al., 2015
−19.20 8.41 Bustamante, unpub.
−20.30 6.90 Vieweg et al., 2012
−18.22 8.64 Sénéchal et al., 2011
−21.60 6.49 Yakovis et al., 2012
−18.22 8.64 Sénéchal et al., 2011
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prior to analysis, independence was tested by calculating Spearman's
correlation coefficient between THg and colony-corrected δ15N which
showed a significant but relatively weak correlation (R = 0.43, p <
0.001). Thus, THg and δ15N, while related, do possess independent var-
iation that allowed for inclusion of both metrics in our analysis to ac-
count for spatial variation in THg concentrations. A 95% probability
niche region in multivariate space was calculated at 10,000 iterations
using diffuse priors (Swanson et al., 2015; Yurkowski et al., 2020b). Ad-
ditional script at 10,000 iterations was conducted to obtain δ13C, δ15N
and THg ranges (difference between the highest and lowest values;
Swanson et al., 2015; Yurkowski et al., 2020b). Three-dimensional
models of the niche rangeswere visualized using the scatter3D function
in the car package v.3.0–9 (Fox andWeisberg, 2019) and the rgl package
v.0.100.54 (Adler and Murdoch, 2017; see Supplemental Materials).

Primary migratory status of each colony, not including the potential
for individual variation, was determined by consulting previous studies
(Schamel, 1977; Bønløkke et al., 2006; Hanssen et al., 2016; Steenweg
et al., 2017; Mallory et al., 2020) and through spatial tracking data col-
lected by the SEATRACK program (https://seapop.no/en/seatrack/).
Moreover, the proportion of sea-ice cover surrounding each colony
within a timeframe reflecting turnover rates of isotope sampling was
determined (plasma within a week of sampling, RBC within a month
of sampling; Hobson and Clark, 1992; Barquete et al., 2013). Sea-ice
cover was analysed via a satellite image of a 100 km area around each
colony on a cloud-less day from NASA Worldview dataset (EOSDIS,
https://worldview.earthdata.nasa.gov). Land pixels were removed
from the image manually and the remaining pixels were categorized
into two groups (openwater or sea ice) using a K-means clustering pro-
cedure via RGB values of the pixels (http://mkweb.bcgsc.ca/color-
summarizer/). The resulting proportion of pixels was used as a proxy
for the proportion of sea ice around the colony during the time of isoto-
pic turnover for each colony (Cusset et al., 2019).

A preliminary 2-tailed t-test was used to determine independence
between colony sea-ice cover and migratory behaviour, which were
not significantly correlated (t5 = 2.11, p = 0.09). Therefore, to deter-
mine sources of niche variation with sea ice cover, a general linear
Fig. 2. 2-dimensional projections of ten 3-dimensional niche regions produced using the R pack
and THg data (in μg/g dw) were used from individuals at 10 pan-Arctic or subarctic common
estimates of δ15N, δ13C and THg individually, and iii) pairings of δ15N, δ13C and THg showing 2
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model (GLM)was used to examine how log-transformed niche size var-
ied by colony sea-ice cover. Next, six GLMs were used to analyze the re-
lationship between sea ice cover and colony δ15N, log-transformed δ13C
and THg ranges, as well as median individual colony-corrected δ15N,
and log-transformed δ13C and THg values for each of the 10 colonies.
Median values were used to avoid data skewed by high/low individual
values within a mean and better represent general colony values.

To examine variation in niche dynamics betweenmigratory and res-
ident colonies, a 2-tailed t-test was conducted to analyze how log-
transformed colony niche size varied with migratory status (migratory
or resident being the two groups). Following this, six 2-tailed t-tests
were used to analyze whether migratory status of a colony resulted in
different colony δ15N, and log-transformed δ13C and THg ranges, as
well as individual colony-corrected eider δ13C, δ15N and log-
transformed THg values.

Finally, a general linear mixed model (GLMM) was used to examine
the relationship between colony-corrected isotopes indicating carbon
source (δ13C), trophic position of each individual, and log-transformed
THg. The model consisted of THg as the dependent variable, with δ13C
and trophic position as independent variables, aswell as colony as a ran-
domvariable. Allmodels conducted throughout the studymet statistical
assumptions, and all log-transformations were conducted using natural
log.

3. Results

3.1. Niche size and underlying sources of variation

Three-dimensional niche size was highly variable among colonies,
ranging from 1.4 (Grindøya) to 21.7 (Iceland), with an average niche
size among all colonies of 9.2± 7.8 (Fig. 2, see SupplementalMaterials).
However, niche size was not correlated with colony sea ice cover (t8 =
−0.92, p = 0.54) or migratory status (t4 = −0.61, p = 0.57). The
Christiansø colony in Denmark had the lowest colony-corrected δ13C
values, suggesting higher phytoplankton-derived carbon in their diet,
while the Alaskan colony had the highest colony-corrected δ13C
age nicheROVER v1.0 (Swanson et al., 2015). Corrected stable isotope (δ13C and δ15N in‰)
eider colonies. Sections show, i) The raw stable isotope and THg data in pairs, ii) density
-dimensional projections of 95% probabilistic niche regions based on 3-dimensional data.

https://seapop.no/en/seatrack/
https://worldview.earthdata.nasa.gov
http://mkweb.bcgsc.ca/color-summarizer/
http://mkweb.bcgsc.ca/color-summarizer/
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suggesting eiders were feeding on prey reflecting more ice algae- or
inshore-derived carbon (see Supplemental Materials). The Alaskan col-
ony also had the highest colony-corrected δ15N values, with the Faroe
Islands having the lowest values, suggesting that Faroese eiders forage
at lower trophic levels, whereas the Alaskan eiders forage at higher tro-
phic levels.

3.2. Relationship between colony migratory behaviour and sea-ice cover
with isotopes and THg

Inter-colony variation in sea-ice presence was positively correlated
with median eider THg concentrations, as well as δ15N and δ13C values
(Table 3). However, δ15N, δ13C, as well as THg ranges did not vary
with colony sea-ice cover (Table 3). Migratory colonies had higher indi-
vidual δ15N and THg, as well as lower individual δ13C compared to indi-
viduals captured at resident colonies (Table 3). However, δ15N, δ13C and
THg range did not vary between the migratory and resident colonies
(Table 3).

3.3. Relationship between isotopic niche and THg concentrations

Both colony-corrected δ13C and trophic position predicted THg con-
centrationwithin individuals. Specifically, individuals with a lower δ13C
value (phytoplankton-based foraging) had higher THg values (Table 3,
Fig. 3). Additionally, THg significantly increased with trophic position,
where individuals with higher trophic positions had greater THg values
(Table 3, Fig. 3).

4. Discussion

Using data collected from ten eider colonies located throughout
their circumpolar range, including both Arctic and subarctic sites, 3-
dimensional niche was quantified size using δ15N, δ13C and THg to de-
termine colony niche size and ranges. Determination of 3-dimensional
niche size allowed for broad comparison of a snapshot of diet breadth
at multiple eider colonies in relation to environmental and behavioural
differences, as well as inference of their potential for flexibility in
Table 3
Results of three sets of statistical analyses: a) seven 2-tailed t-tests relating migratory sta-
tus to colonyniche size, isotope and THg ranges, aswell as individual colony-corrected iso-
tope and THg values; b) seven GLM results relating colony sea ice cover to colony niche
size, isotope and THg ranges as well as median colony isotope and THg values; c) GLMM
results relating common eider trophic position, calculated using baseline and individual
δ15N and colony-corrected δ13C to individual THg values. All log-transformed values were
determined using the natural log and used to meet model assumptions.

Variable Estimate (β) SE df t p

a) 2-tailed t-test – Migratory Status
log(Niche size) 4 −0.609 0.573
log(δ13C Range) 8 −0.339 0.743

δ15N Range 7 0.996 0.353
log(THg Range) 5 −0.600 0.576
Individual δ13C 238 2.218 0.028
Individual δ15N 220 −6.858 <0.001

log(Individual THg) 124 −6.329 <0.001

b) GLM – Sea Ice Cover
log(Niche size) −0.0125 0.019 8 −0.639 0.541
log(δ13C Range) −0.013 0.008 8 −1.635 0.141

δ15N Range −0.002 0.014 8 −0.106 0.919
log(THg Range) −0.004 0.009 8 −0.459 0.658
log(Median δ13C) 0.028 0.010 8 2.936 0.032

Median δ15N 0.052 0.022 8 2.332 0.048
log(Median THg) 0.014 0.006 8 2.525 0.036

c) GLMM – Individual log(THg)
Intercept −1.923 0.304 142.233 −6.330 <0.0001

Trophic position 0.563 0.096 234.614 5.862 <0.001
δ13C −0.063 0.022 232.943 −2.813 0.005
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response to environmental change. The benefits of using multiple
chemical tracers are demonstrated when assessing the effects of spatial
variation and environmental gradients on the foraging ecology of highly
mobile consumers.

4.1. Colony foraging flexibility and resiliency predictions

Generally, colonies that utilize broader, more generalist diets are ex-
pected to have larger foraging niches, thus are expected to be inherently
less vulnerable to change since they have greater flexibility in their prey
source as they forage on a wide variety of organisms and habitats
(Jakubas et al., 2017; Both et al., 2010). Colonies with restricted, special-
ist diets are expected to have smaller foraging niches, influenced by
both prey availability and foraging distance, and are generally viewed
as more vulnerable to environmental change (Bolnick et al., 2003;
Araújo et al., 2011; Pratte et al., 2019). While the interpretation of
MDND is not necessarily straightforward due to complex relationships
and multiple factors influencing each dimension, MDNDmay be useful
in predicting the resiliency of common eider colonies to ongoing climate
change across their range. However, numerous other factors should also
be considered including multiple biogeochemical metrics, colony re-
cruitment and individual fitness (Paredes et al., 2012; Smith and
Reeves, 2012; Sydeman et al., 2012). Thus, this analysis provides a snap-
shot of niche characteristics at a singular time frame that may assist
with colony-wide resiliency predictions in combination with future re-
search on changing niche dynamics at these colonies.

When grouped for similarity, niche size generated the following
general pattern in this study: Iceland, East Bay Island and Faroe Islands
> Christiansø and John's Island > Kongsfjorden, Alaska and Russia >
Tern Island and Grindøya (Fig. 1). Using this 3-dimensional view of
niche size, it was predicted that colonies with wider (i.e., more general-
ist) 3-dimensional niches such as those in Iceland and Faroe Islands, or
colonies comprised ofmigrants frommultiple locations such as East Bay
will show greater resiliency to shifts in foodweb dynamics compared to
colonies with a smaller (i.e., more restricted, specialist) niche similar to
Tern Island and Grindøya. Smaller niches are predicted to be at a disad-
vantage in a changing climate as these alterations may change or elim-
inate food sources, leaving a colony or species more vulnerable if they
donot have theflexibility to adapt and shift their dietwith this changing
prey base (Both et al., 2010; Le Bohec et al., 2013; Ceia and Ramos,
2015). However, climate change may present an opportunity for Arctic
colonies with smaller niches to expand their prey sources with advanc-
ing phenology of spring phytoplankton blooms and more open water
sources. For those with broader niches at southern latitudes, that
niche size may be critical along with further changes in the distribution
and availability of key prey (Staudinger et al., 2019). Nevertheless, more
research that integrates measures of breeding success and colony de-
mographics is necessary to test these resiliency hypotheses over long
temporal scales to identify seasonal and annual variation in inter- and
intra- colony foraging ecology.

4.2. Variation in niche size, niche metrics and THg to colony sea-ice cover

Colony niche size was not correlated with sea-ice cover, possibly at-
tributable to several factors. First, despite the presence of sea ice likely
restricting foraging locations, eiders may still be able to access a diver-
sity of resources, including the potential for prey sources such as ice-
associated amphipods as niche size was similar to locations that have
more accessible, ice-free areas (Karnovsky et al., 2008). Second, north-
ern colonies may support a variety of individuals that utilize both gen-
eralist and specialist strategies, thus adding to the flexibility and
diversity of the colony in the face of environmental change (Woo
et al., 2008; Ceia and Ramos, 2015; Pratte et al., 2019). Notably, the rel-
ative proportion of generalist and specialist individuals in populations
dramatically affects dietary niche size with generalist-based popula-
tions having wider niches (Newsome et al., 2007).



Fig. 3. Relationship between THg (natural log-transformed) with trophic position (calculated based on δ15N; see Methods) and colony-corrected δ13C (in ‰) for individuals at 10 pan-
Arctic or subarctic common eider colonies, identified by colour.
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Eider colonies with greater sea-ice cover had higher δ13C values,
which is not consistentwith the expected gradient based on ocean tem-
perature (Sackett et al., 1965; Goericke and Fry, 1994; McMahon et al.,
2013). However, this pattern can bemost likely explained by eiders for-
aging on resources derived from ice algae associated with higher ice
cover versus more phytoplankton-derived resources in areas with
lower sea-ice presence (Hobson et al., 1995; Tamelander et al., 2006;
McMahon et al., 2006). As well, macroalgal carbon has a higher δ13C
value than phytoplankton, and therefore could be a contributing carbon
source to these spatial differences. Nonetheless, spatial differences in
carbon source use among eider colonies existed, where some colonies
use more phytoplankton-derived carbon than others. Furthermore, re-
sults showed that in general, eider colonies with greater sea ice cover
also had higher median individual THg and δ15N, suggesting that sea-
ice presence resulted in eiders foraging at higher trophic levels, thus
contributed to higher overall THg exposure. Potential reasons for higher
trophic-level foraging include eiders feeding on ice-associated sources
of prey prior to laying, such as amphipods, due to restricted access to
benthic prey with sea ice present (Karnovsky et al., 2008). Amphipods
seasonally forage on ice algae and this would decouple them from the
pelagic food web and result in higher δ13C values (Werner, 1997;
Brown et al., 2017). Furthermore, waters with sea ice present are super-
saturated with dissolved THg, thus further contributing to the elevation
of THg in foodwebs (DiMento et al., 2019). Individual variation in forag-
ing behaviour is known to have a role in Hg accumulation (Anderson
et al., 2009; Braune et al., 2014; Le Croizier et al., 2019) and this exists
within the colonies studied as demonstrated by the colony ranges.

4.3. Role of migration in shaping MDND and THg exposure

It was predicted that migratory populations (see Table 1, Fig. 1)
would have larger niches due to exposure to a variety of environmental
conditions and prey types at both migratory and breeding grounds
where resources are stored to mobilize during their incubation fast
(Herrera, 1978; Gómez et al., 2016). In the present study, there was
no pattern betweenwithmigratory behaviour and niche size. However,
two of the largest niche sizes found at two resident colonies (Iceland
and Faroe Islands) may stem from colony-wide expansion in dietary
choice due to increased prey availability. This has been reported in
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Iceland where eiders within the colony selected a wide array of both
benthic and pelagic prey (Kristjánsson et al., 2013). Waters around
Iceland are a mix of Arctic (East-Greenland Current), as well as Atlantic
origins (North Atlantic Current), and this, together with greater lack of
sea ice, would provide a diverse range of prey options to pre-breeding
eiders (Vincent, 2010; Kristjánsson et al., 2013; Casanova-Masjoan
et al., 2020). The East Bay Island colony, consisting of migrants from
Greenland and Newfoundland, had the second largest niche size poten-
tially in part due to a mixing of individuals from both overwintering
sites (Steenweg et al., 2017). Additionally, individual variation inmigra-
tion distance and strategy within a colony, although not included in the
present study, may lead to broader colony niche ranges (Mallory et al.,
2020).

Colonies supportingmigratory eiders had higher THg concentrations
and foraged at higher trophic levels compared to colonies supporting
residents, suggesting that colonies of migratory individuals had access
to higher trophic-level prey, or relied on these prey to store resources
necessary for incubation. Colonies with resident eiders had higher indi-
vidual δ13C levels indicating diets with greater foraging based on ice
algae, potentially due to residing at their Arctic breeding sites year-
round while migratory colonies move to more suitable areas with pre-
sumably lower sea ice. Combined with the results on colony sea ice
cover, these dynamics show that changes in environmental conditions
and variabilitymay have different effects onmigratory and resident sea-
bird colonies dependent on future colony flexibility, thus should be fac-
tored into future analyses especially regarding climate change effects
within Arctic ecosystems.

4.4. Relationship between trophic position, foraging location and THg
concentrations

With increasing industrial activity and contaminant deposition due
to long-distance transport in northern latitudes, as well as the release
of stored Hg from melting cryosphere and increased erosion of terres-
trial sources, Arctic-inhabiting species are potentially becoming more
at risk for contaminants exposure and a suite of possible negative neu-
rological, physiological and reproductive impacts (Dietz et al., 2013;
Scheuhammer et al., 2015; Soerensen et al., 2016; Cossa et al., 2018).
This is especially a potential population stability concern for harvested
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species, such as common eider, which are an important, harvested spe-
cies for many Indigenous communities in the North (Nakashima and
Murray, 1988; Priest and Usher, 2004). Concentrations of THg for the
eider colonies in this study are comparable to those observed in previ-
ous eider research (Provencher et al., 2016; Albert et al., 2019; Ma
et al., 2020; Dietz et al., 2021). The mean concentrations of THg in the
Alaska, Christiansø and East Bay colonies were above 0.95 μg/g dw, sug-
gesting that three of the 10 colonies studied, and 40% of sampled eiders,
were above general environmental background concentrations (Eagles-
Smith et al., 2008; Ackerman et al., 2016). Nonetheless, concentrations
were still sufficiently low to assign them a general “low risk” status re-
garding concerns for health, physiology, behaviour and reproductive ef-
fects (Ackerman et al., 2016; Dietz et al., 2019, 2021). The individual
eider with the highest Hg concentration was from the Iceland colony
(2.55 μg/g dw compared to the colony mean of 0.95 μg/g dw). Iceland
had less sea ice than other regions, such as Alaska that had the highest
sea ice cover and colony THg average (1.23 μg/g dw).

With a rapidly declining sea-ice cover, a rise in phytoplankton pro-
duction and resulting eider consumption of prey derived from phyto-
plankton carbon sources could be related to higher, individual THg
concentrations (Stern et al., 2012). Combined with the results in
Section 4.2 showing higher median THg concentrations at colonies
with greater sea-ice cover, these results demonstrate that within colo-
nies, individuals with greater phytoplankton-based consumption had
higher THg concentrations. The relationship between individual δ13C
and THg, combined with effects of trophic position (determined using
δ15N) on THg may potentially have future effects on seabird health, be-
haviour and reproduction in thosewith at-risk Hg exposure. However, it
is likely that any possible effects would not be consistent across the en-
tire range of a species, especially given the regional difference in which
climate change is altering the Arctic (Muir et al., 1999; Mallory and
Braune, 2012; Swart et al., 2015). Nevertheless, variation among colo-
nies was detected, suggesting regional differences in the relationship
between δ13C, trophic position and THg; for instance, the Christiansø
and Kongsfjorden colonies showed opposite relationships between
THg and δ13C (Fig. 3). Thus, more in-depth analyses of the environmen-
tal factors at each sitewould allow for site-specific investigation into the
relationships between foragingbehaviour and THg uptake. Additionally,
further knowledge of baseline variation (THg, δ15N, δ13C) in colony-
specific prey at a varying spatio-temporal inter-annual scale, parallel
with eider sampling, would aid future interpretation of eider niche
size, δ15N, δ13C, and sources of individual and colony THg. Additionally,
the contribution of terrestrial carbon sources and agricultural runoff to
marine areas around some of these colonies may also contribute to var-
iation in individual δ13C and δ15N values and affect exposure to THg and
its accumulation (Dunton et al., 2006; Laursen et al., 2018; Renedo et al.,
2020). Overall, the relationship between environmental conditions and
THg concentrations presents a complex system and paired with the
rapid changes in ecosystem dynamics currently being observed
(i.e., sea ice abundance), underscores the necessity of future, consistent
annual monitoring, especially in key ecosystem indicators like marine
birds.

5. Conclusion

Inter-colony, 3-dimensional niche size, isotopic and THg ranges, and
the relationships between δ13C, δ15N and THg within individuals was
examined. Our results suggest that common eider colonies across the
Arctic and subarctic have a wide degree of diet variation, potentially in-
fluenced by environmental changes including spatio-temporal differ-
ences in primary productivity. It was found that consideration of
colony-level variation in life histories (migratory vs resident) was im-
portant for assessing the level of risk towhich a colonymay be exposed.
Further, inter-annualMDNDanalyses using simultaneous local δ13Cma-
rine isoscapes to correct for eider δ13C, in addition to corrections for
baseline THg, would provide greater insight into the temporal variation
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in niche size that exists at both an inter- and intra-colony scale. Taken
together, exploringMDND is an increasingly valuable tool to provide in-
sight into how diet breadth differs across a species' range, especially
when combined with temporal and spatial variation in environmental
conditions and key components to variation in life history such as
migration.
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