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(2024) Phenotypic constraints at the top of
the world: an Arctic songbird faces the
cumulative cost of maintaining a winter-like
phenotype during breeding.
Front. Ecol. Evol. 12:1369761.
doi: 10.3389/fevo.2024.1369761

COPYRIGHT

© 2024 Le Pogam, O’Connor, Love, Young,
Drolet, Régimbald, Roy, Robitaille, Berteaux,
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Phenotypic constraints at the top
of the world: an Arctic songbird
faces the cumulative cost of
maintaining a winter-like
phenotype during breeding
Audrey Le Pogam1,2*, Ryan S. O’Connor1,2, Oliver P. Love3,
Kevin G. Young4, Justine Drolet1,2, Lyette Régimbald1,
Gabrielle Roy1, Francis Robitaille1, Dominique Berteaux1,2,
Andrew Tam5 and François Vézina1,2

1Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski,
QC, Canada, 2Groupe de recherche sur les environnements nordiques BORÉAS, Centre d’Études
Nordiques, Centre de la Science de la Biodiversité du Québec, Université du Québec à Rimouski,
Rimouski, QC, Canada, 3Department of Integrative Biology, University of Windsor, Windsor,
ON, Canada, 4Department of Biology, Advanced Facility for Avian Research, University of Western
Ontario, London, ON, Canada, 5Department of National Defence, 8 Wing Environment, Astra,
ON, Canada
Among birds, several body composition traits typically decrease in size or mass

during breeding likely as a result of competing demands during this critical life history

stage. However, a recent outdoor captive study in an Arctic-breeding cold-specialist

songbird (snow buntings – Plectrophenax nivalis) demonstrated that these birds

maintain winter cold acclimatization during the spring and summer, despite facing

summer temperatures much warmer than on their Arctic breeding grounds. This

suggests that buntings may face a cumulative physiological cost during breeding:

having to support a winter phenotype while also upregulating additional traits for

reproduction. The current study aimed to test this hypothesis. Between 2016 and

2019, we examined how body composition and metabolic performance

(thermogenic capacity and physiological maintenance costs) changed from pre-

breeding to chick provisioning in free-living birds captured at the northern limit of

their breeding range in the Canadian Arctic (Alert, NU, 82°). While body mass and fat

reserves deceased significantly between pre-breeding and territory defense

independent of thermal conditions, cold endurance and associated traits remained

stable and elevated up to the nestling provisioning period, as long as ambient

temperature remained below a threshold level of 0–2°C. These results indicate that

snow buntings must maintain a high thermogenic capacity after arrival on the

breeding grounds if temperatures remain below freezing, regardless of whether

birds are actively breeding or not. In this context, our research suggests that these

birds, and possibly other arctic breeding songbirds, may experience cumulative

physiological costs during years with a late onset of spring, when breeding activities

(i.e., egg production and incubation) begin while temperatures are still below 0–2°C.
KEYWORDS

Arctic birds, body composition, breeding, carry-over, cold acclimatization, life history
stages, phenotypic flexibility, thermoregulation
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1 Introduction

The annual cycle of migratory birds is composed of several life-

history stages, including wintering, migratory and reproduction, which

typically occur in a determined temporal sequence (Wingfield et al.,

1999; Ramenofsky et al., 2003). However, in species experiencing short

time windows for reproduction, such as those breeding at high latitudes

or altitude, or those with irruptive breeding events, these life-history

stages may also overlap in time (Hahn, 1995; Ramenofsky and

Wingfield, 2006, 2017). For example, Arctic breeding birds often

experience substantial snow accumulation, sub-zero temperatures

and unpredictable weather upon arrival on their breeding grounds

(e.g., Meltofte, 1983; Walsh et al., 2005; see also Morrison et al., 2007;

Wingfield et al., 2011). Under such conditions, behavioral observations

show that an overlap between winter and reproductive phenotypesmay

occur (Ramenofsky andWingfield, 2006, 2017). Wingfield et al. (2004)

have indeed reported winter behaviours, namely high sociability,

hyperphagia and high mobility in white crowned sparrows

(Zonotrichia leucophrys gambelii) facing harsh environmental

conditions upon arrival on their breeding ground at Brook’s Range

(68°N), Alaska. These behaviours can be resumed later during the early

stages of breeding if spring conditions deteriorate (Meltofte, 1983).

The occurrence of winter behaviors during the pre-breeding or

breeding periods likely represents a way to cope with harsh or

extreme conditions. However, other than endocrine regulation,

which has received substantial attention (Wingfield et al., 2004;

Ramenofsky et al., 2017; and see Ramenofsky and Wingfield, 2006

for a review) little is known about the underlying physiological

adjustments implemented during these stage overlaps. In fact, taken

separately, cold acclimatization and breeding involve significant

morphological, physiological and metabolic changes to support

energy demanding activities, which may or may not be

compatible. For example, birds experiencing declines in ambient

temperatures typically respond by increasing heart mass (Zheng

et al., 2008; Petit and Vézina, 2014b), blood oxygen carrying

capacity (hematocrit, Swanson, 1990b; O’Connor, 1996) and flight

muscle size (O’Connor, 1995; Cooper, 2002; Swanson and Vézina,

2015; but see Barceló et al., 2017; Milbergue et al., 2018).

Collectively these changes contribute to improving shivering heat

production (Swanson, 1990b; Petit and Vézina, 2014a). In contrast,

breeding birds typically loose both fat and muscle mass (Morrison

et al., 2005; Morrison, 2006; Vézina et al., 2012), experience declines

in oxygen carrying capacity (Morton, 1994; Morrison, 2006; Krause

et al., 2016a) and develop large reproductive organs (Vézina and

Salvante, 2010). At the moment, it is unclear to what degree these

critical physiological transformations may overlap in time in

support of breeding in cold environments such as the Arctic,

especially considering that the timing of breeding can be closely

tied to spring temperatures and snow cover (Høye et al., 2007; Moe

et al., 2009; Grabowski et al., 2013).

Using captive snow buntings (Plectrophenax nivalis) as a model,

Le Pogam et al. (2021b) recently showed that these Arctic cold

specialists kept in outdoor aviaries on their wintering grounds

(48°N) maintain thermogenic capacity and cold endurance

comparable to the peak of winter over most of the summer,

which corresponds to their breeding activities in the Arctic. In
Frontiers in Ecology and Evolution 02
other words, birds retained a cold acclimated phenotype during

summer temperatures that greatly exceeded what is experienced on

their Arctic breeding grounds [e.g., mean ambient temperature (Ta)

in July and August: 20.3°C, range: 15.9–25.0°C]. This finding

contrasts with previous studies showing ambient temperature as

the main driver of thermogenic capacity in passerine birds (e.g.,

Saarela and Heldmaier, 1987; McKechnie and Swanson, 2010;

Swanson, 2010). Le Pogam et al. (2021b) thus concluded that the

maintenance of winter-like cold endurance throughout summer

could provide further downstream advantages given that these birds

can face unpredictable and snowy sub-zero conditions while

breeding in the Arctic (Meltofte, 1983).

Although observations in captive snow buntings provide

evidence for life-history overlap in Arctic breeders (Tinbergen,

1939; Meltofte, 1983; Wingfield and Hunt, 2002; Le Pogam et al.,

2021b), the study by Le Pogam et al. (2021b) was nonetheless based

on non-breeding, captive individuals. However, investment in a

breeding phenotype typically involves considerable physiological

changes including the loss of body mass and a reduction in oxygen

carrying capacity and muscle mass, which combined could reduce

cold endurance (O’Connor, 1995; Cooper, 2002; Dubois et al., 2016).

Consequently, while we know that snow buntings maintain cold

endurance at winter levels during spring migration and arrival (Le

Pogam et al., 2021a), it is currently unclear whether, and if so, for how

long, these birds can maintain this level of cold endurance while

breeding. In addition, recent evidence has also shown that shivering

heat production and cold endurance can vary independently from

changes in muscle size (Stager et al., 2015; Milbergue et al., 2018; Le

Pogam et al., 2020) or other physiological systems (Petit et al., 2013;

Barceló et al., 2017). Therefore, patterns observed in captive birds

could still reflect true endogenous cycles in buntings adapted to breed

in cold, unpredictable Arctic environments (Le Pogam et al., 2021b).

Based on these recent discoveries, we sought to determine i) how

the transition from a post-arrival cold-acclimated phenotype into a

breeding phenotype (i.e., pre-breeding, territorial defense and

nesting) influences metabolic performance and associated traits in

snow buntings, and ii) how spring thermal conditions may influence

these patterns. We formulated three hypotheses and related

predictions to meet these two objectives. First (Hypothesis 1,

Figure 1), snow buntings could maintain a winter-type phenotype

for traits related to cold endurance into breeding to safeguard against

unpredictable sudden cold conditions (Le Pogam et al., 2021b). In

this case, we would expect birds to maintain traits (Table 1) at

constant pre-breeding levels as they transition to territorial defense

and breeding, independently from environmental conditions (i.e.,

temperature). Second (Hypothesis 2, Figure 1), cold endurance traits

(Table 1) could mainly be driven by thermal conditions (Saarela and

Heldmaier, 1987; McKechnie and Swanson, 2010; Swanson, 2010;

Swanson et al., 2014), independently from breeding phenotypes. We

would then expect performance traits to respond only to temperature,

irrespective of the birds’ breeding stages. In this scenario, as winter

phenotypes appear to come with spare capacity, expressed as

performance trait values plateauing below a certain ambient

temperature (Petit and Vézina, 2014b; Swanson and Vézina, 2015;

Vézina et al., 2020), one would expect snow buntings to lose cold

endurance only when rising ambient temperature reaches a certain
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threshold value. The birds would then undergo physiological changes

and lose cold endurance rapidly in years with early springs, or

maintain capacity longer when cold conditions last later into the

season. The third hypothesis (Hypothesis 3, Figure 1) posits that snow

buntings are unable to maintain a winter-type phenotype while

breeding due to physiological changes in traits related to cold

endurance (Table 1). In this specific case, one would therefore

expect metabolic performance parameters to drop as birds

transition from arrival into breeding, irrespective of spring

temperatures. To test these three hypotheses, we examined inter-

annual variation in phenotypic traits and metabolic performance in

free-living buntings captured in the Canadian High Arctic during the

pre-breeding stage (i.e., transition stage between arrival and dispersal

onto breeding territories), during male territorial establishment, and

during breeding, and then examined how temperature variation was

associated with changes in phenotypic patterns.
2 Materials and methods

2.1 Study species

Snow buntings are an Arctic-breeding, migratory passerine known

for their ability to endure cold environments (Scholander et al., 1950a;

Le Pogam et al., 2020). In the spring, birds migrate through cold winter

landscapes (McKinnon et al., 2016; Snell et al., 2018), with males
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arriving on their breeding grounds to secure territories (up to 83.6°N)

up to a month before females (March–April; McKinnon et al., 2016;

Snell et al., 2018). Ambient arrival conditions can be comparable or

worse than those experienced at the peak of winter, with extensive

snow cover and air temperatures (Ta) reaching –30°C (Meltofte, 1983).

Buntings are known to arrive on the breeding grounds with winter level

cold endurance (Le Pogam et al., 2021a) and can maintain winter-type

behaviour for several weeks before dispersing to defend breeding

territories (Tinbergen, 1939; Meltofte, 1983).
2.2 Study sites, capture and
measurements protocol

Snow buntings were studied in the Arctic during the springs of

2016 to 2019 at Alert, Nunavut, Canada (82°29’58”N, 62°28’5”W). For

this study, we distinguished three life-history stages (LH-stages): (1) the

transition stage between arrival and dispersal onto breeding territories

(hereafter pre-breeding, n = 266 birds), (2) the stage during which

males sing and display to defend territories (hereafter territorial, n = 66

birds), and (3) the period during which males and females were paired

(hereafter breeding). This last stage includes pair formation (n = 11),

nest building (n = 5), egg laying (n = 3), incubation (n = 6), and nestling

provisioning (n = 21). Sample sizes for each sub-stage were too small to

consider them separately in analyses, and as such they were combined

into one breeding stage category (n = 46).
FIGURE 1

Visual representation of the three hypotheses tested in this study. Snow buntings could either maintain a winter-type phenotype through breeding
(hypothesis 1), loose cold endurance when ambient temperature rises above a certain threshold, independently from breeding (hypothesis 2), or be
unable to maintain cold endurance while breeding, irrespective of temperature (hypothesis 3). See text in figure and introduction for more details.
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At the pre-breeding stage, birds were caught with walk-in or

potter traps (Third Wheel, Devon, England) baited with

commercial seed-mix (crushed corn, wheat, sorghum, white

millet, red millet and black sunflower, Armstrong, Hagersville,

ON, Canada). During the territorial and breeding stages,

individuals were attracted to a double potter trap using song

playback and a live male bunting as a decoy in one side of the

trap. Birds were then captured on the other side of the trap or with

spring traps (TWB45 Moudry, Řıč́any, Czech Republic) set close by.

Immediately after capture, a blood sample (<1% of Mb) was

taken from the brachial vein. Blood samples were temporarily kept

in cold storage and later centrifuged for 10 minutes at 8,000 RPM to

obtain data on hematocrit (i.e., packed red blood cell volume). We

then weighed (±0.01g) and sexed birds according to the methods

described in Smith (1992). We banded birds with a USGS

numbered metal band as well as a unique combination of three

darvic color bands to allow for identification from a distance.

Morphometric measurements, namely length of head plus beak,

tarsus, tail and right wing, were taken to calculate a “structural body

size index” (see below). The size of fat stores was also estimated

visually using a standard fat score index (from 0 = no visible fat in

furculum area to 6 = fat overlapping pectoralis muscles, Love et al.,

2012). The birds were then transferred to a field laboratory (less

than 6km distance from capture site, transport time < 20 minutes)

where we estimated pectoralis muscle thickness non-invasively by

ultrasonography (Dietz et al., 1999; Wuenschel et al., 2006; Le

Pogam et al., 2020) using a LOGIQe ultrasound scanner fitted with

a linear probe (12MHz, GE Healthcare, Wauwatosa, WI, USA).

Since the supracoracoideus muscle is very thin at the measured

location, muscle thickness values essentially reflect thickness of the
Frontiers in Ecology and Evolution 04
pectoralis muscle. However, because ultrasound probe positioning

can vary muscle thickness values, we also measured the height of the

keel (see Le Pogam et al., 2020). Birds were then kept in cages (76cm

W × 46cm D × 45cm H) with ad libitum water and seed (same mix

as for captures) until metabolic performance measurements were

complete (see below). In total, between 2016 and 2019, 311 males

and 67 females were caught and banded during the breeding season

(see Supplementary Table 1 for specific sample sizes).
2.3 Metabolic performance

For metabolic performance measurements, we used the set-up

and protocol described in detail by Le Pogam et al. (2020, 2021b,

2021a), except that the oxygen analyzers used at Alert were two

Sable Systems Foxboxes (Sable Systems, Las Vegas, NV, USA). Key

points specific to this study are presented as follows.

Summit metabolic rate (Msum) was measured on a maximum of

two birds simultaneously, allowing up to two trials per day.

Depending on the time of capture, measurements began between

08h50 and 22h45 (average: 14h45 ± 2.89h; duration: 1h32 ± 0.72h).

Measurements took place at least one hour after ultrasound

measurements. Birds were placed inside stainless steel metabolic

chambers (effective volume 1.5L) and exposed to dry, CO2-free air

for 10 minutes at −18°C (or −9°C during the breeding stage) (flow

rate of 1,200mL.min−1), before switching to a helox gas mixture

(21% oxygen, 79% helium, Rosenmann and Morrison, 1974). The

chamber temperature was then lowered by 3°C every 20 minutes

until birds became hypothermic (decline of _VO2 for several minutes

and body temperature ≤ 37°C, Swanson and Liknes, 2006) or
TABLE 1 List of phenotypic traits measured in this study and their responses to cold and winter in passerine birds.

Metabolic performance

Phenotypic
traits

Interpreted as
Response to
cold/winter

Pertinent references

Summit metabolic
rate (Msum)

Maximum shivering thermogenic capacity,
index of cold endurance

Typically higher McKechnie and Swanson, 2010; Swanson, 2010; Petit et al., 2013;
McKechnie et al., 2015; Le Pogam et al., 2020

Basal metabolic
rate (BMR)

Maintenance energy expenditure, index of
physiological maintenance costs

Often higher but not in
snow buntings

McKechnie and Swanson, 2010; Swanson, 2010; Petit et al., 2013;
McKechnie et al., 2015; but see Le Pogam et al., 2020

Phenotypic traits underlying metabolic performance

Phenotypic
traits

Interpreted as
Response to
cold/winter Pertinent references

Body mass Total body composition Typically higher Carey et al., 1978; Liknes and Swanson, 1996; Zheng et al., 2008; Petit
et al., 2014; Le Pogam et al., 2020

Fat store Energy reserves Typically higher Blem, 1976; Lehikoinen, 1987; Gosler, 1996; Cooper, 2007; Le Pogam
et al., 2020

Hematocrit Blood oxygen carrying capacity Typically higher
Swanson, 1990a; O’Connor, 1996; Le Pogam et al., 2020

Pectoralis muscle
thickness

Shivering capacity
Typically increases with
high metabolic rate

O’Connor, 1995; Cooper, 2002; Swanson and Merkord, 2012; Petit
et al., 2013; Swanson and Vézina, 2015; Le Pogam et al., 2020
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reached the end of the preprogrammed trial. Six measurements out

of 85 (7%) involved birds that were not hypothermic by the end of

the trial. However, since hypothermia is not a prerequisite to

confirm Msum (Dutenhoffer and Swanson, 1996), we opted to

include these individuals in final analyses. Removing them had no

influence on results.

We measured basal metabolic rates (BMR) overnight on a

maximum of four birds simultaneously. The BMR trials began

between 18h25 and 1h26 (average start time: 19h38 ± 5.07h). We

insured a minimum 1h of rest after the Msum measurements. Using the

same metabolic chambers as for Msum, birds were exposed to 25°C, a

temperature within the snow bunting thermoneutral zone (Scholander

et al., 1950b) and received dry CO2-free air (flow rate of 650 mL.min−1)

for the duration of trials (12h49 ± 5.9h on average). Birds were weighed

( ± 0.01 g) before and after measurements, and average Mb was used in

BMR analyses. We used a sampling frequency of 5 secs for Msum and

20 secs for BMR. BothMsum and BMRwere calculated from the highest

and lowest averaged 10 min trace of _VO2, respectively, using equation

10.1 from Lighton (2019), using the instantaneous measurement

technique (Bartholomew et al., 1981) for Msum. The duration of

BMR trials ensured that birds were post-absorptive at the time of

BMRmeasurement.We estimated energy expenditure for all metabolic

measurements using a constant equivalent of 19.8kJ L−1O2 and

converted units to Watts (Gessaman and Nagy, 1988).
2.4 Weather data

Weather data were obtained from the Environment and

Climate Change Canada Alert weather station (i.e., our study

site). More specifically, we extracted daily data for Ta mean and

produced 7-day averages that were then used in statistical analyses.
2.5 Statistical analysis

Analyses proceeded in two steps. First, we used general linear

models with Mb, fat score, hematocrit, pectoralis muscle thickness,

Msum and BMR as separate response variables. All models included

year, LH-stage (i.e., pre-breeding, territorial and breeding), mean

ambient temperature (hereafter Ta) and their interactions as

predictor variables. We chose to use 7-day mean temperature (6

days prior to capture + day of capture) because earlier reports

showed that metabolic performance responds to relatively short

term variation in temperature (short and medium term variation as

presented by Swanson and Olmstead, 1999). We also added time of

day at capture (for Mb and fat score), structural size (for Mb), keel

height (for pectoralis muscle thickness) and Mb and length of

captivity (for Msum and BMR) as covariates in models. Since

several structural size parameters were collected for the same

individual, the estimate of “structural body size” was based on the

first component obtained from a principal component analysis

combining variation in the lengths of head plus beak, wing and

tail (Rising and Somers, 1989). Since females do not have a

“territorial” stage (only males defend territories; Tinbergen, 1939),

the variable “sex” was not include in these models.
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In the second step, we further analyzed how pectoralis muscle

thickness, hematocrit and mass-independent Msum varied with Ta in

interaction with LH-stage and/or year. These variables were the only

ones where significant interactions were found (see Results). Linear

regression analyses were therefore performed per year and/or per LH-

stage. We used piecewise linear regression models to determine

whether response variables declined at a given threshold Ta. In this

set of analyses, we used the residuals of Msum corrected for body mass

(hereafter residual Msum) and residuals of pectoralis muscle thickness

corrected for keel height (hereafter residual pectoralis muscle

thickness). Visual inspection of residuals confirmed assumptions of

normality and homogeneity for all models. All analyses were

conducted using JMP pro (14.0.0) and data are presented as mean

± standard error of the mean (s.e.m.). Effects were considered

significant and retained in models when P< 0.05.
3 Results

3.1 Weather conditions

At Alert, daily mean Ta exceeded 0°C at the earliest on June 2 in

2019 and at the latest on June 11 in 2018 (Figure 2). The years 2016

and 2019 had the fastest temperature increases (Figure 2, Table 2).

However, there was more snow on the ground and rapid snow melt

occurred up to 10 days later in 2017 than in other years (Figure 2).
3.2 Effects of LH-stage and Ta on
metabolic performance and
associated traits

Controlling for the effect of time at capture and body size, Mb

was significantly affected by LH-stage, but not by Ta or year

(Table 3). Mb was 14.4% higher during pre-breeding than during

territorial defense (Tukey’s HSD P < 0.0001) and Mb at that latter

stage did not differ from that measured during breeding (pre-

breeding vs breeding: Tukey’s HSD P < 0.0001, Figure 3A). Fat

score followed a similar pattern (Table 3), with birds carrying less

fat during territorial defense (pre-breeding vs territorial: Tukey’s

HSD P < 0.0001) and during breeding (pre-breeding vs breeding:

Tukey’s HSD P < 0.005) than at pre-breeding (Figure 3B).

The influence of temperature on hematocrit was dependent on

both LH-stage and year (see interaction terms in Table 3).

Regressions performed within LH-stages showed that hematocrit

decreased as Ta increased, but only during breeding (Figure 4).

However, piecewise linear regression combining all data showed no

inflection point for hematocrit.

Pectoralis muscle thickness varied among both years and LH-

stages (Table 3). However, these effects occurred in interaction with

Ta (see interaction terms in Table 3). Regression analyses per LH-

stages revealed that residual pectoralis muscle thickness decreased

with warming Ta only during breeding (Figure 5). Regressions per

year showed a significant negative relationship between residual

pectoralis muscle thickness and Ta, but only in 2017 (Figure 5).

Piecewise regression combining all data revealed an inflection point
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at 0.1 ± 1.6°C (Figure 6A). Above that temperature, residual

pectoralis muscle thickness declined with increasing Ta (Figure 6A).

Summit metabolic rate, whether considered whole (not shown)

or corrected for Mb, differed among years and LH-stages, but both

these effects depended on Ta (interaction terms in Table 3). As with

hematocrit and pectoralis muscle thickness, regressions within LH-
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stages showed a negative linear relationship between residual Msum

and Ta only during breeding (Figure 7). Intra-annual regression

analyses also showed a negative relationship between residual Msum

and Ta, but only in 2019 (Figure 7). Piecewise regression performed

on all data highlighted an inflection point at 1.9 ± 2.6°C (Figure 6B).

Above that temperature, residual Msum declined with warming

temperature (Figure 6B).

Whole basal metabolic rate varied with LH-stage (F2,146 = 21.7,

P < 0.001, not shown), but this effect was driven by the loss of Mb

among stages (Figure 3). Considering the significant influence of Mb

(in addition to that of length of captivity), we found no significant

influence of year, Ta or LH-stage on BMR (Table 3). Maintenance

costs remained constant at 0.56 ± 0.01W from spring to end

of summer.
4 Discussion

The objective of this study was to examine whether metabolic

performance and associated traits in snow buntings remained at

post-arrival level (i.e., winter level; Le Pogam et al., 2021a) across

three Life History (LH) stages on their breeding grounds, or

whether performance declined in response to temperature and/or

breeding stages. Overall, although all traits did not show the same

pattern, our results suggest that in snow buntings, thermogenic

capacity declines during active breeding, but only if ambient

temperatures rise above freezing.
4.1 Body mass and fat storage decline as
birds begin to breed

After considering the effects of structural body size and time at

capture, both body mass and fat scores were only affected by life

history stages in snow buntings. Indeed, mass and fat scores both

declined from pre-breeding to the territorial stage and then

remained low thereafter during breeding. As this finding was

independent from the effects of temperature and year, these

results support the idea that birds could not maintain mass and

energy stores at winter levels while breeding (Hypothesis

3, Figure 1).

A decline in body mass and fat stores during the establishment

of breeding territories is common in passerines (e.g., Ramenofsky

and Wingfield, 2006; Krause et al., 2016b). For species breeding at

high latitudes, this phenomenon generally coincides with the

dispersal of post-arrival flocks and the secretion of reproductive

hormones (see Ramenofsky and Wingfield, 2006 for a review).

Snow buntings also become very active as they initiate breeding

activities. For example, the period of territorial defense is

characterized by high rates of singing in males, courtship displays

where the birds climb in altitude and sing while gliding down as well

as physical fights between competing males (Romero et al., 1998;

Guindre-Parker et al., 2013). Once breeding pairs have formed,

males and females are highly mobile during nest building and both

adults maintain high rates of nestling provisioning after the eggs

have hatched (Tinbergen, 1939; Lyon et al., 1987), with daily resting
A

B

C

D

E

FIGURE 2

Ambient air temperatures (A–D) and snow depth (E), at Alert,
Nunavut, Canada during spring (2016 to 2019). Temperature data
show mean daily values (dots) as well as the recorded range of daily
minimum and maximum values (doted lines). The hatched period
corresponds to the days when the average temperature over 7 days
was equal or lower than 1.9°C, the threshold temperature for Msum

(see main text). The life history (LH) stages of snow buntings used in
this study are represented as lines above each graph (A–D) with the
top line being pre-breeding, the middle establishment of territories,
and the bottom breeding. The dotted line portion in 2018 and 2019
corresponds to the nestling provisioning stage. The X symbol
represent the dates of first observation of birds on the study site.
Other symbols represent the first and last capture of prebreeding (•),
territorial (▪) and breeding (▴) individuals. Numbers at the right of
each line represent sample sizes.
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periods typically being limited to 3–5h per day (Hussell, 1972). In

fact, nestling growth rates in snow buntings are among the highest

in passerines of that body size (i.e., 11.5–13% of adult body weight

gain per day; Hussell, 1972), with only 8–10 days from hatching to
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fledging, with nestlings unable to fly at fledging (Hussell, 1972).

With the high energy cost of flapping flight in birds (Hedenstrom,

1993) and the busy schedule of breeding snow buntings, it may

simply not be possible for these birds to maintain body mass and fat
TABLE 2 Average monthly ambient air temperatures during the breeding season recorded at Alert (NU) between 2016 and 2019.

Ambient air temperature Ta (°C) at Alert

Mean Ta per
year (Alert)

2016 2017 2018 2019

April −24.5 ± 6.3a −22.5 ± 3.3a −24.7 ± 2.7a −22.7 ± 5.0a

May −11.4 ± 5.3a −11.8 ± 4.1a −11.7 ± 4.4a −8.1 ± 3.6b

June 3.1 ± 3.9a 0.03 ± 3.6b −1.2 ± 3.2b 2.6 ± 2.9a

July 8.1 ± 4.3a 4.2 ± 3.1b 3.9 ± 2.9b 6.1 ± 4.5ab
Letters indicate significant differences (Tukey’s HSD P < 0.05) between years within months.
TABLE 3 Linear effects models comparing phenotypic traits among life-history stages in snow buntings breeding at Alert, Nunavut, Canada.

Variable
Body mass Fat score

df F P df F P

Ta mean 1, 357 0.0035 0.95 1, 364 0.21 0.65

Year 3, 355 0.21 0.89 3, 362 0.21 0.89

LH-stage 2, 356 28.95 <0.0001 2, 363 18.74 <0.0001

LH-stage x Year - - - - - -

LH-stage x Ta mean - - - - - -

Year x Ta mean - - - - - -

Year x LH-stage x
Ta mean - - - - - -

Time at capture 1, 357 5.36 0.02 1, 364 3.41 0.07

Structural size 1, 357 40.68 <0.0001 NA NA NA

Variable
Hematocrit Pectoralis muscle thickness

df F P df F P

Ta mean 1, 232 4.06 0.05 1, 185 0.63 0.43

Year 3, 230 1.62 0.18 3, 183 4.38 0.005

LH-stage 2, 231 1.47 0.23 2, 184 4.54 0.01

LH-stage x Year 6, 227 3.71 0.002 - - -

LH-stage x Ta mean 2, 231 0.84 0.43 2, 184 11.08 <0.0001

Year x Ta mean 3, 230 1.96 0.12 3, 183 4.24 0.006

Year x LH-stage x
Ta mean 6, 227 2.20 0.04 - - -

Keel height NA NA NA 1, 185 276.09 <0.0001

Variable
Mass-independent Msum Mass-independent BMR

df F P df F P

Ta mean 1, 72 1.83 0.18 1, 146 0.07 0.80

Year 2, 71 7.42 0.001 3, 144 0.85 0.47

LH-stage 2, 71 2.56 0.08 2, 145 0.54 0.58

LH-stage x Year - - - - - -

(Continued)
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stores at winter levels, even if thermal conditions can be highly

unpredictable in the Arctic (Table 2). Alternatively, but not

exclusively, maintaining a lower body mass at these stages could

also be adaptive as it reduces flight costs during a period of high

energy demand (Merkle and Barclay, 1996; Nagy et al., 2007; Boyle

et al., 2012).

While the variation in body mass and fat stores reported here is

consistent with that of other free-living species, it contrasts with

previous observations in captive snow buntings (Navarro and

Gutiérrez, 1995; Le Pogam et al., 2021b). Both Navarro and

Gutiérrez (1995) and Le Pogam et al. (2021b) observed that when

maintained at their wintering latitude throughout summer, this

species maintains body mass and fat stores above their winter

average until at least the end of June. Similar observations have

also been made in other captive migrant species (Eyster, 1954;
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Gwinner and Czeschlik, 1978; Schwabl and Farner, 1989), which

have led others to hypothesize that different endocrine responses,

lack of visual cues or reproductive opportunities in captivity

(Gwinner and Czeschlik, 1978; Schwabl and Farner, 1989) could

trigger this effect. Although this is possible, captive studies have also

shown strong endogenous regulation of seasonal cycles in migrant

species (Ramenofsky and Wingfield, 2006; Vézina et al., 2011;

Karagicheva et al., 2016). It could therefore also be that snow

buntings are pre-programmed, via their endogenous circannual

cycle, to maintain high energy intake rates during breeding as this

occurs at a time of very high daily energy expenditure (Vézina et al.,

2011; Karagicheva et al., 2016). In free-living breeding conditions,

this would be enough to balance energy budgets and maintain stable

(but lower) body mass, while in captivity maintaining high intake

rates in birds not able to breed could lead to fat stores and body

mass comparable to or above wintering levels.
4.2 Maintenance costs decline with
breeding, but cold endurance traits
respond to warming temperatures

Basal metabolic rate is interpreted as a measure of physiological

maintenance costs and is thought to reflect changes in the activity

and amount of tissues forming an animal (Piersma and Lindström,

1997; Piersma et al., 2004; Swanson et al., 2017a). We found that

total maintenance costs declined as birds lost body mass with

territorial defense and breeding, but that tissue metabolic

intensity (mass corrected BMR) remained constant. We also

found that these patterns were independent of variation in

ambient temperature. Since territorial defense and nestling

provisioning are energetically demanding activities for snow

buntings, lower overall maintenance costs could be beneficial to

balance energy budgets at that time (Swanson et al., 2017b). This

finding contrasts with an earlier report of increasing BMR in

shorebirds breeding at Alert (Vézina et al., 2012), although a large

portion of this variation was attributed to migration recovery in

recently arrived birds. Female birds have also been shown to have

higher BMR during egg development (Chappell et al., 1999;

Salvante et al., 2010; Vézina and Salvante, 2010). However, our

data did not include measurements at that stage.
A

B

FIGURE 3

The effect of life history (LH) stage on size-independent body mass
(A) and fat score (B) in snow buntings breeding at Alert, Nunavut,
Canada. Letters indicate significant differences (Tukey’s HSD P <
0.05). Numbers within bars indicate sample size for each group.
Values presented as mean ± SEM.
TABLE 3 Continued

Variable

Mass-independent Msum Mass-independent BMR

df F P df F P

LH-stage x Ta mean 2, 71 3.95 0.02 - - -

Year x Ta mean 2, 71 3.37 0.04 - - -

Year x LH-stage x
Ta mean - - - - - -

Mass 1, 72 7.98 0.006 1, 146 56.41 <0.0001

Length of captivity NA NA NA 1, 146 8.51 0.004
Models also included covariates meaningful to specific dependent variables. See text for details.
Values in bold indicate p-value of 0.05 or lower.
Covariables marked NA mean that they are not included in the model.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1369761
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Le Pogam et al. 10.3389/fevo.2024.1369761
Our data on hematocrit, pectoralis muscle thickness and Msum

showed comparable patterns regarding life-history stages and

ambient temperature. Values for all three variables remained

relatively stable during the pre-breeding and territorial stages, but

declined with warming temperatures during breeding. In other

words, warming temperature led to a loss of cold endurance as

predicted under Hypothesis 2, but only when the birds were actively

breeding, also providing support for Hypothesis 3. In fact, although

sample size limitations prevented us from testing for within-

breeding-stage effects (e.g., nest building, incubation and

provisioning) Figures 4–7 indicate that the temperature-related

decline in these traits appears to occur during the highly active

period of nestling provisioning. However, this stage also coincides

with temperatures above 0°C in all years. Results further suggest

that in some years temperature may also act on muscle size (in 2017,

Figure 5) and Msum (in 2019, Figure 7) independently from life-

history stage. Although the overlap in time makes the independent

influence of temperature and breeding stages difficult to tease apart,

several lines of evidence, together with previous studies, lead us to

posit that variation in ambient temperature, rather than the direct

effects of breeding, is the main driver of the observed decline in cold

endurance in breeding snow buntings.
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We observed a decline in pectoralis muscle thickness as

temperature increased during breeding, with the lowest values

recorded in birds provisioning nestlings. It is possible that the

high locomotor activity required during foraging and provisioning

led to muscle loss, as is often observed in other species during

migration (e.g., Battley et al., 2000; Bauchinger et al., 2005), and to a

correlated decline in Msum since shivering heat production covaries

with muscle size in buntings (Dubois et al., 2016; Le Pogam et al.,

2020; Le Pogam et al., 2021b). However, migration-related

muscle loss results from unbalanced protein turnover due to a

negative energy budget during flights (i.e., no or little replacement

for degraded proteins as birds lose mass; Bauchinger and

McWilliams, 2010, 2010; but see Gerson and Guglielmo, 2011). In

our study, buntings did not show signs of negative energy balance

once territorial defense had been initiated. In fact, both body mass

and fat scores remained stable between territorial and breeding

stages (Figure 3). Furthermore, experimental studies have shown

that exercise in birds leads to an increase in pectoralis muscle mass

and not a decrease as we observed here (Zhang et al., 2015, 2018).

Additionally, seasonal declines in muscle mass and Msum have been

observed at the end of winter as temperatures warm up in non-

migrant species coming out of cold wintering conditions (e.g., Petit
FIGURE 5

Relationships between residuals of pectoralis muscle thickness (pectoralis muscle thickness corrected for probe positioning) and ambient air
temperature in relation to life-history stages and year in snow buntings at Alert, Nunavut, Canada.
FIGURE 4

Relationship between hematocrit and ambient air temperature in relation to life history stages in snow buntings breeding at Alert, Nunavut, Canada.
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et al., 2014). Such a pattern has also been observed in outdoor

captive snow buntings exposed to summer temperatures on their

wintering grounds (Le Pogam et al., 2021b). Indeed, although Le

Pogam et al. (2021b) did not test for an influence of temperature on

muscle thickness per se, they nonetheless reported muscle sizes

comparable to winter in March and April (corresponding to

migration), and a relatively slow, but constant, decline through

the rest of summer that was paralleled by a reduction in Msum.

Therefore, as these captive birds could not breed, we believe that

changes in muscle size in breeding buntings, combined with the

parallel changes in Msum, are more likely to result from rapidly

improving thermal conditions than from a consequence of the

birds’ breeding activity.

We also found a negative relationship between hematocrit level

and ambient temperature, but only during breeding when thermal

conditions had improved. Breeding related changes in avian
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hematocrit have been reported before (Morton, 1994; Fair et al.,

2007; Krause et al., 2016a). For example, female birds typically

experience hematocrit declines prior to egg-laying due to an

increase in plasma estrogen inhibiting erythrocyte synthesis

(Wagner et al., 2008; Williams et al., 2012), but this effect

disappears during active nestling provisioning, the period

matching the decline observed in this study (Morton, 1994;

Williams et al., 2004; Krause et al., 2016a and see Fair et al., 2007

for a review). In males, however, hematocrit is positively related to

testosterone (Buttemer and Astheimer, 2000) and testosterone does

decline when males begin to provision nestlings in buntings

(Romero et al., 1998). Nevertheless, although hematocrit typically

increases with exercise (Bairlein and Totzke, 1992; Morton, 1994;

Piersma et al., 1996), it has consistently been found to correlate

negatively with ambient temperature in birds (DeGraw et al., 1979;

Rehder and Bird, 1983; Fair et al., 2007). This marker of oxygen
FIGURE 7

Relationship between residuals of Msum (Msum corrected for body mass) and ambient air temperature according to life-history stages and year in
snow buntings at Alert, Nunavut, Canada.
A B

FIGURE 6

Relationship between residuals of muscle thickness (pectoralis muscle thickness corrected for probe positioning) and ambient temperature (A) and
between residuals of Msum (Msum corrected for body mass) and ambient air temperature (B) in snow buntings at Alert, Nunavut, Canada.
Temperature values and arrows show the inflexion points for these two parameters.
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carrying capacity is also directly and positively correlated with

thermogenic capacity (Swanson, 1990a; Petit and Vézina, 2014a),

including in snow buntings (Le Pogam et al., 2020; Le Pogam et al.,

2021b). It is therefore likely that the hematocrit reduction observed

in breeding buntings results from increasingly favorable thermal

conditions. As blood oxygen carrying capacity and cardiac function

appears to support maximal shivering heat production (Petit et al.,

2014; Vézina et al., 2017) this effect probably underlies part of the

observed temperature dependent changes in Msum.
4.3 Snow buntings may be paying
cumulative physiological costs in late
spring years

Our observations suggest that variation in oxygen carrying

capacity, muscle size and Msum may be more strongly influenced

by warming summer temperatures than by breeding activities in

snow buntings. These findings support results from several studies

on avian cold endurance published since the 1990s showing the

proximate influence of temperature on thermogenic capacity

(Swanson and Olmstead, 1999; McKechnie and Swanson, 2010;

Swanson, 2010 for reviews). In fact, combining data across years

and breeding stages (Figure 6), we observed that pectoralis muscle

thickness began declining once ambient temperatures warmed

above 0°C. Thermogenic capacity followed closely and began to

decline at temperatures above 2°C (Figure 6). Therefore, our results

for traits underlying cold endurance are consistent with the Msum

reaction norm reported in other birds (Petit and Vézina, 2014b;

Swanson and Vézina, 2015) and support the hypothesis that snow

buntings maintain thermogenic capacity after their arrival if

temperatures remain below freezing, whether they are actively

breeding or not (Hypothesis 2, Figure 1).

This finding of a threshold temperature effect on the

maintenance of thermogenic capacity is important because it

suggests that snow buntings likely incur cumulative physiological

costs in years with a late onset of spring where breeding activities

may begin at temperatures well below 0–2°C. The timing of our own

data collection confirms this idea (see Figure 2). While nestling

provisioning clearly occurs at temperatures above freezing, other

important stages such as egg production and incubation may begin

(2016, 2019) or occur almost completely (2017, 2018) at

temperatures requiring the maintenance of winter levels of

thermogenic capacity and cold endurance. Other species, such as

the Canada jay (Perisoreus canadensis) are known to initiate

breeding at sub-zero temperatures (e.g., −10°C); however, these

birds are larger than snow buntings and rely on considerable

amounts of cached food to support their energy requirements

(Whelan et al., 2016). Experimental studies with birds breeding in

the cold have shown reduced rates of egg production, delayed laying

and smaller clutches (Salvante et al., 2007), as well as reduced

locomotor activity and potential energy reallocation among

physiological systems when birds must combine cold acclimation

and breeding (Salvante et al., 2010). The extent to which

maintaining winter level cold endurance in late Arctic springs
Frontiers in Ecology and Evolution 11
may or may not be restrictive in actively breeding snow buntings

will therefore require more research.
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We thank Franç ois Fournier from Environment and Climate

Change Canada for help with logistical support in the initial Alert

phase of this project. We thank Jonathan Coudé for technical
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